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The lowest-lying resonance in the QCD spectrum is the 0++ isoscalar σ meson, also known as
the f0(500). We augment SU(2) chiral perturbation theory (χPT) by including the σ meson as an
additional explicit degree of freedom, as proposed by Soto, Talavera, and Tarrús and others. In
this effective field theory, denoted χPTS, the σ meson’s well-established mass and decay width
are not sufficient to properly renormalize its self energy. At O(p4) another low-energy constant
appears in the dressed σ -meson propagator; we adjust it so that the isoscalar pion-pion scattering
length is also reproduced. We compare the resulting amplitudes for the ππ → ππ and γγ → ππ

reactions to data from threshold through the energies at which the σ -meson resonance affects
observables. The leading-order (LO) ππ amplitude reproduces the σ -meson pole position, the
isoscalar ππ scattering lengths and ππ scattering and γγ → ππ data up to

√
s ≈ 0.5 GeV. It

also yields a γγ → ππ amplitude that obeys the Ward identity. The value obtained for the π0

polarizability is, however, only slightly larger than that obtained in standard χPT.
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1. Introduction

The spectrum of Quantum Chromodynamics (QCD) consists of several bound and resonant
states with masses below 1 GeV. The lightest QCD bound states are the pseudoscalar pions, which
have a special role in the theory as pseudo-Nambu-Goldstone bosons of QCD’s approximate,
spontaneously-broken, chiral symmetry. The lowest-lying QCD resonance has 0++ quantum num-
bers: the same as those of the vacuum. This state, often termed the “σ meson", and also referred to
as the f0(500), is (slightly) manifested in pion-pion scattering. It has attracted much attention over
many years. We do not review that history here, instead referring the interested reader to Ref. [1].

Determinations of σ -meson parameters rely on an extrapolation of the ππ scattering amplitude
into the complex plane: one must obtain its mass, Mσ , and width, Γ, from the position in the
complex energy plane at which a pole in the ππ t-matrix occurs. From 1996–2010 the Particle
Data Group (PDG) [2] results for the mass and decay width ranged from 400 to 1200 MeV and
from 500 to 1000 MeV, respectively. These wide variations occurred because obtaining the mass,
decay width, and couplings of this resonance is difficult: the resonance is very broad and can
hardly be seen in the ππ scattering phase shifts. The standard Breit-Wigner formulation for narrow
resonances is definitely not applicable in this case. The last fifteen years has seen the advent of
dispersion-relation evaluations that incorporate the constraints of chiral symmetry and—in some
cases—crossing symmetry too [3, 4, 5, 6]. The results of these calculations largely agree, and the
2015 review of Peláez quotes a σ -meson pole position [1]:

√
s = Mσ − iΓ/2; Mσ = (449+22

−16) MeV; Γ = (550±24) MeV. (1.1)

This pole position is markedly lower than the scale of chiral-symmetry breaking, ΛχSB, usually
understood to be the rho-meson mass, or 4πF , with F = 92.419 MeV the pion decay constant. It
is also comparable to the kaon mass. Together with findings from lattice QCD at large N f , this has
led some authors to explore EFTs in which the σ is a dilaton of QCD (see, e.g., Refs. [7, 8]).

Regardless of whether the scalar excitation is a QCD dilaton or not, |Mσ − iΓ/2| is well below
ΛχSB, so the 0++ resonance can be expected to spoil the convergence of the χPT expansion in
channels where it plays a role. This motivates augmenting standard chiral perturbation theory by
the addition of a σ field, whose mass is between the pseduo-Goldstone-boson mass scale, Mπ , and
ΛχSB. The resulting EFT has (spontaneously and dynamically broken) SU(2)L × SU(2)R symmetry.
It was written down by Soto, Talavera, and Tarrús in Ref. [9], who called it χPTS. It has also been
explored in Refs. [10, 11]. In χPTS the σ is not a Goldstone boson of QCD, so its couplings must
be fixed from data: only a few are constrained by chiral symmetry.

Here we examine the reactions ππ → ππ and γγ → ππ , both of which couple to the 0++

channel in the s-channel, and exhibit slow convergence when investigated in two-flavor χPT. We
compare those standard χPT calculations at leading [O(p2)] order to χPTS at LO: the theory with
the additional scalar isoscalar degree of freedom intercalates between χPT at O(p2) and χPT
at O(p4). We demonstrate that χPTS naturally includes a σ meson with a large width that is,
nonetheless, not prominent in the ππ S-wave phase shift.

In our approach, we employ a power counting with two light scales: mπ and Mσ . The resulting
hierarchy on which the EFT is built is then mπ �Mσ � ΛχSB. The LO amplitude in our approach
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consists of the standard χPT O(p2) interaction plus an s-channel σ pole that is enhanced near the
resonance so it becomes O(p0). (Away from s∼M2

σ the s-channel pole is O(p4/M2
σ ).)

The rest of this paper is structured as follows: in Sec. 2 we review the Lagrangian developed in
Ref. [9] (or, equivalently, the later Ref. [11]), and explain the power counting we use in this paper.
In Sec. 3 we calculate the σ propagator at O(p4). In Sec. 4 we employ this propagator, together
with the standard mechanisms of χPT at O(p2), to describe ππ scattering. In Sec. 5 we consider
γγ → ππ . Sec. 6 offers our conclusions.

2. The Lagrangian and Power counting

In Ref. [9] Soto et al. modified the χPT Lagrangian to χPTS by including terms containing
a dynamic isosinglet scalar σ field S in addition to the matrix U that parameterizes the Goldstone
boson fields in standard SU(2) χPT [12]. In the notation of Ref. [9] the terms in the effective
Lagrangian that are relevant for this study are:

L S
2 =

(
F2

4
+Fc1dS+ c2dS2 + · · ·

)
〈DµU(DµU)†〉+

(
F2

4
+ c1mS+ c2mS2 + . . .

)
〈χU† +Uχ

†〉

+
1
2

∂µS∂
µS− 1

2
m2

SSS− f2p(∂µ∂
µS)2− λ3

3!
S3− λ4

4!
S4 , (2.1)

where c1d , c2d , c1m, c2m, and f2p are new low-energy constants (LECs) in the O(p2) Lagrangian. In
Eq. (2.1), DµU = ∂µU− i[vµ ,U ]+ i{aµ ,U} is the chiral covariant derivative, χ represents a scalar
source. The terms on the second line are the Lagrangian of the scalar S field with bare mass mS.
This Lagrangian, unlike the typical L for scalar fields, contains an additional fourth-order term.
Although nominally fourth order this term is needed for proper renormalization of the σ -meson self
energy. We argue that this term is important for the phenomenology of the σ , since in its absence
the σ couples strongly to two pions, causing the bumps in the ππ→ ππ and γγ→ ππ processes to
be very pronounced—something that is not seen in data.

In χPTS we consider two different energy regions of interest. In the near-threshold region we
have p∼ mπ and the standard χPT power counting: each vertex with n powers of momentum p or
mπ scales as pn and the pion propagator scales as p−2. In this regime the σ propagator scales as
m−2

S , since p is markedly less than mS. It therefore produces larger threshold effects than the χPT
counter terms at O(p4), since mS is taken to be� ΛχSB.

But the effects of the σ are enhanced—to an effect that is nominally larger than the O(p2)

leading χPT ππ amplitude—in the second regime where p ∼ mS, i.e., in the vicinity of the res-
onance. Here the σ propagator develops a pole. It then needs to be dressed by the inclusion of
the leading [O(p4)] self energy, Σ, which is resumed to all orders in the s-channel via a Dyson
equation. The inclusion of f2p as part of this self energy is mandatory for proper renormalization,
which is why this particular p4 operator is relevant in our leading-order study. The renormalized
Σ ensures that the σ develops a pole at the physical mass and width. There is then a (in principle
narrow) kinematic window where the p2−M2

σ piece of the inverse σ propagator is of the same
order, or smaller than, the O(p4) self energy. In this kinematic window the resumed σ propagator
scales as p−4, is enhanced, and becomes a leading-order effect.
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3. Calculation of the σ -meson self energy

Figure 1: The self-energy diagrams of the σ meson at the one-pion-loop level, i.e. O(p4). The solid
(dashed) line represents the σ (π) propagator. The squares indicate that the interaction appears due to the
terms containing the S field in the L S

2 Lagrangian. The left-hand diagram involves two insertions of c1d and
the right-hand one one insertion of c2d or c2m.

We have performed a calculation of the σ -meson self energy to O(p4) in Ref. [13]. Only one-
loop diagrams need to be considered and the pertinent ones are shown in Fig. 1. We can express
the σ self energy in the modified minimal-subtraction (MS) renormalization scheme as

Σ
MS(s,µ) = Σ0(µ)+Σ1(µ)s+Σ2(µ)s2 + c2

1d(µ)Σ̃(s) , (3.1)

where µ is a renormalization scale.
In Eq. (3.1), the bare constants Σ0, Σ1, and Σ2 are µ-dependent whereas Σ̃(s) is independent of

µ . When Eq. (3.1) is combined with bare propagators and vertices the Σ0(µ)-term is renormalized
by m2

S(µ) and the term linear in s by c2
1d(µ). However, the left-hand graph in Fig. 1 is quarti-

cally divergent, and so there is also an s2 ln(µ) piece of the diagram that must be absorbed by a
counterterm. This is done by f2p(µ). We then express the dressed renormalized σ propagator as

iD(s) =
i

s−m2
S,r−2 f2p,rs2− c2

1d,rΣ̃(s)
, (3.2)

where the quantities with subscripts r are the µ-independent renormalized quantities. Bruns also
observed the presence of the s2 ln(µ) term that we found here [14], but then discarded it and did
not explore its consequences for σ phenomenology.

Equation (3.2) shows that there are three unknown parameters—mS,r, f2p,r, and c1d,r—that
affect σ -meson physics at leading order in χPTS. Two constraints on them are obtained by de-
manding that the quadratic s-dependence ∼ f2p,r and the s-dependence of Σ̃(s) in Eq. (3.2) ulti-
mately produce a pole at the position (1.1). The third constraint results from demanding that the
LO amplitude reproduce the experimental pion-pion scattering length in the scalar-isoscalar chan-
nel, a0

0=0.2210(47)(40) m−1
π [15]. (For details, see Ref. [13].) Here, and throughout, we take

mπ = 139.57 MeV [2]. The values of mS,r, f2p,r, and c1d,r we then obtain are

mS,r = 221+5
−4 MeV; c1d,r = 0.206+0.001

−0.002; f2p,r = (3.4+0.01
−0.02)×10−6 MeV−2. (3.3)

The errors are purely from the propagation of uncertainties on input quantities, and do not include
the effect of higher-order terms. These are the χPTS parameters for the particular set of renormal-
ization conditions we chose: other renormalization conditions are certainly possible.

In Ref. [9], Soto et al. pointed out the need for renormalization of the one-loop σ self energy,
but they set the finite part of f2p to zero. We find a non-zero, but natural, value: f2p,r ∼ 1/Λ2

χSB.
Also, our analytic result for the self energy Σ̃ agrees with that found in Ref. [9]. The key difference
to our result is that we corrected a factor-of-two error in the relation between the width and self
energy that is present in both Refs. [9, 11].
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4. S-wave pion-pion scattering at leading order in χPTS

We now compute ππ → ππ and the relevant diagrams are shown in Fig. 2. The thick line
indicates that we have resummed the σ self energy and so are employing the propagator (3.2) in
all three diagrams. However, diagrams (iii) and (iv) are formally next-to-leading order (NLO),
O(p4/M2

σ ) and are numerically small.
In contrast, the LO mechanisms are diagram (ii)—the tree-level χPT ππ scattering amplitude—

near threshold, where it is O(p2), and diagram (i)—the s-channel σ pole—in the resonance region,
where it is O(p0). By combining diagrams (i) and (ii) we obtain an amplitude that is LO in both
the threshold and resonance regions, and interpolates smoothly between the two.

Figure 2: Tree-level diagrams contributing to ππ scattering in χPTS: (i) s-channel, (ii) contact term, (iii)
t-channel, and (iv) u-channel. The triangle represents the interaction from the standard χPT L2 Lagrangian.
The thick solid line indicates the dressed σ propagator of Eq. (3.2). The first two diagrams form the LO
amplitude in our calculation, while the other two are part of the NLO amplitude.

The isospin I=0 projected pion-pion scattering amplitude at LO is then

T I=0(s, t,u) =
1

F2

(
3(s−m2

π)+(t−m2
π)+(u−m2

π)−
12c2

1d,r(s−2m2
π)

2

s−m2
S,r−2 f2p,rs2− c2

1d,rΣ̃(s)

)
. (4.1)

This amplitude is only perturbatively unitary: diagram (i) is unitary on its own, but no loop effects
associated with diagram (ii) are included in our LO calculation, they enter only at O(p4/Λ2

χSB) in
the chiral expansion, see also the discussion of the breakdown of this EFT below. Given this, we
must use the first-order relation between the S-wave ππ phase shift δ 0

0 and T I=0:

δ
0
0 =

|k|
32π
√

s

∫ 1

−1
d(cosθ) ℜ[T I=0(s,cosθ)] , (4.2)

where |k|=
√

s−4m2
π/2 and θ are the center-of-mass (CM) momentum and scattering angle.

Figure 3 shows the standard LO χPT [O(p2)] result (dashed purple curve) and the total LO
χPTS phase shift (dash-dotted blue curve). The contributions from σ -meson physics are generally
smaller than the O(p2) χPT result. The s-channel σ -meson pole only affects the total ππ phase
shift weakly. In Fig. 3 we also compare our LO result to the dispersive/Roy-equation analyses
from Refs. [4, 16] (solid green and brown curves). And we display ππ phase-shift data. The left
panel emphasizes the lower-energy range, where data (red circles) were obtained by analyzing the
ππ scattering in the final-state interactions between pions in the Ke4 decay K±→ π±π∓e±ν [15].
The description of these near-threshold data is very good—especially considering this is only a LO
calculation: adding the s-channel σ -meson pole ameliorates the discrepancy between the O(p2)

χPT result and the data. This σ mechanism does not affect the I = 2 channel, so the good agreement
of LO χPT with data there (not shown) is maintained.

In the right panel we compare to data (black squares) in the energy range above 500 MeV
from Ref. [17], obtained from analysis of the reactions π+p→ π+π−∆++ and π+p→ K+K−∆++.
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Figure 3: The ππ scattering phase shift as a function of the CM energy. In the left panel we show the results
immediately above threshold, while the right panel shows the result up to

√
s = 870 MeV. In both panels

the dashed purple line represents the standard χPT result and the dashed-dotted blue line is the combined
result of diagrams (i) and (ii). This is to be compared to the red circles (black squares) that represent the
data from Ref. [15] (Ref. [17]). The solid green and brown curves are results from the dispersive analyses
of Refs. [4, 16] respectively. The green shaded band is a parameterization of the error reported in Ref. [4].

Adding the s-channel σ brings the total phase shift closer to these data, although there is somewhat
of a difference in the curvature at higher energies between the data and the LO χPTS amplitude.

The t- and u-channel σ -meson poles are part of the NLO χPTS ππ amplitude. Unlike the
standard χPT amplitude, Eq. (4.1) does not respect crossing symmetry—even before the isospin
projection is made. The NLO graphs (iii) and (iv), with a dressed σ propagator, restore crossing
symmetry. The additional amplitude in the I = 0 channel is:

∆T I=0(s, t,u) =−
4 c2

1d,r

F2

(
(t−2m2

π)
2

t−m2
S,r−2 f2p,rt2− c2

1d,rΣ̃(t)
+

(u−2m2
π)

2

u−m2
S,r−2 f2p,ru2− c2

1d,rΣ̃(u)

)
.

(4.3)
The t- and u-channel σ -pole have a markedly smaller effect on the I = 0 S-wave phase shift than
does the s-channel one [13]: consistent with these graphs being NLO in the χPTS amplitude. We
sacrifice crossing symmetry so our EFT encodes the hierarchy of mechanisms for 4m2

π < s < M2
σ .

As already observed, our amplitude violates unitarity. Since the standard χPT O(p2) ampli-
tude is the largest piece of the S-wave phase shift it drives this violation. It violates the simplest
consequence of unitarity already for

√
s slightly below 700 MeV [18]. Furthermore, the size of the

phase shift for
√

s≥ 600 MeV implies that the O(p4) χPT amplitude will already produce marked
corrections to the LO result in that region, so the results here cannot be trusted beyond

√
s = 600

MeV.

5. γγ → π0π0 cross section and pion polarizabilities in χPTS

There are no O(p2) (tree-level) contributions to the reaction γγ → π0π0. Note also that the σ

is not charged, so minimal substitution does not generate any tree-level couplings between it and
photons. This process therefore must involve pion-loop contributions, and in χPTS these come in
two varieties: diagrams with a σ pole and diagrams without such a pole.

5
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Figure 4: The leading-order diagrams for the process γγ → π0π0 in χPTS. The upper four correspond to
standard χPT while the lower four appear additionally in χPTS. The wavy lines are photons. The direction
of time is to the right.

The top line of Fig. 4 shows the O(p4) contributions to the process γγ → π0π0 of the first
type. These are the standard χPT graphs at this order. In χPTS the bottom four graphs—again with
a dressed σ propagator—are part of the LO amplitude if we consider the region s∼M2

σ .
The Ward identity for the upper four standard χPT diagrams of Fig. 4 has been verified in

Ref. [19]. We derived the Ward identity for the bottom four graphs in Ref. [13].
Turning now to the γγ → π0π0 cross section, the amplitude for the top four standard χPT

graphs of Fig. 4 is evaluated in Ref. [19] and here we simply recycle their results for that part of
the amplitude. The cross-section data for γγ → π0π0 process have been measured by The Crystal
Ball Collaboration and reported in Ref. [20]. The scattering cross section for γγ→ π0π0 measured
there can be expressed as

σ =
1
2

3.2π

[
1

256π2s

√
1− 4m2

π

s

(
s2

2
+ sm2

π +m4
π

)(
|HχPT (s)+Hσ (s)|2

)]
, (5.1)

where the standard χPT and additional part of the amplitude that arise in χPTS (Hσ (s)) are:

HχPT (s) =−
1

8π2
2e2

F2
s−m2

π

s

{
1+

m2
π

s

[
ln

(
x+
x−

)
− iπ

]2}
, (5.2)

and

Hσ (s) =
2c2

1d,re
2

F2π2

[
1

4s2

{
−2m2

π(s+2m2
π log(m2

π))+
1
3

(
18m2

πs−2s2 +12m4
π log(m2

π)

+12m2
π(s−2m2

π)

[
Li2

(
1

x+

)
+Li2

(
1

x−

)])}
− 1

3

](
(s−2m2

π)

s−m2
S,r−2 f2p,rs2− c2

1d,rΣ̃(s)

)
,

(5.3)

with x± = 1
2 ±

1
2

√
1− 4m2

π

s , and Li2 representing the dilogarithm function.
In Fig. 5, the left graph shows the γγ → π0π0 cross section due to the lower four graphs of

Fig. 4, those that involve the σ -meson pole. The bump seen there is inherited by the result for
the total cross section: the dashed-dotted blue curve in the right panel, which has some signal of
the σ resonance near 400 MeV. There is a good match between the LO χPTS γγ → π0π0 cross

6
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Figure 5: The γγ→ π0π0 cross section as a function of the CM energy for |cosθ | ≤ 0.8, where θ is the CM
scattering angle. The dashed red curve in the left panel is the contribution from only the bottom graphs of
Fig. 4. Meanwhile the dotted purple curve in the right panel is the leading contribution in χPT, i.e., the top
graphs in Fig. 4. The dashed-dotted blue curve in the right panel is the total combined result at LO in χPTS.
Experimental data are from Ref. [20] (red circles) and Ref. [21] (black squares). The green band represents
the once-subtracted result obtained in Ref. [22] from a dispersive Roy-equation analysis.

section and that obtained in a Roy-equation treatment of this reaction (with one subtraction) [22]
up to

√
s≈ 550 MeV. The calculation of Ref. [22] is represented in Fig. 5 by the green band. The

enhancement that we attribute to the s-channel σ -meson pole is slightly visible in the data (red
circles) from Ref. [20]. Our result for the total cross section agrees with this data to within 1.5
standard deviations up to

√
s≈ 550 MeV.

At higher energies our LO result and the Roy-equation result of Ref. [22] have very different
energy dependence. As already discussed in Sec. 4, the absence of ππ loop graphs means our LO
amplitude is not correct once the ππ phase shift becomes significant, and the energy dependence
obtained at LO in this theory is not a good match for the Roy-equation parameterization once√

s ≥ 600 MeV. This also means we cannot describe the higher-statistics, higher-energy data on
γγ → π0π0 obtained in Ref. [21]. Those data are represented by the black squares in Fig. 5.

Finally, we examine the pion electromagnetic polarizabilities. The (α1 − β1)π0 difference
of dipole and (α2− β2)π0 difference of quadrupole polarizabilities are defined [19] through the
expansion of the amplitude H(s)=HχPT (s)+Hσ (s) about s=0 as

1
4πmπ

H(s) = (α1−β1)π0 +
s

12
(α2−β2)π0 +O(s2) . (5.4)

In Table 1, we present our values of polarizabilites along with those from standard χPT one-
loop [O(p4)], two-loop [O(p6)], and dispersion-relation calculations. We see from Table 1 that
our calculation does capture some physics beyond the standard one-loop calculation, and seems
to incorporate some of the two-loop physics that gives large corrections to both (α1−β1)π0 and
(α2−β2)π0 . However, a calculation with f2p,r = 0 (and c1d,r re-adjusted to again reproduce the σ

width) bridges half the gap between the O(p4) and O(p6) polarizabilities. Of course, this is at the
cost of an unphysically large ππ and γγ → ππ cross section.

7
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Table 1: The dipole and quadrupole polarizabilities in units of 10−4 fm3 and 10−4 fm5. The second and third
columns contain the standard χPT one-loop and two-loop results from Ref. [19] and Ref. [23] respectively.
The fourth column contains the results from dispersion-relation calculations [23] The last column is our
χPTS result at one-loop.

Polarizabilities χPT to one-loop χPT to two-loop Disperson relations χPTS at one-loop
(α1−β1)π0 -0.98[19] -1.9[23] -1.6[23] -1.1
(α2−β2)π0 20.37[19] 37.6[23] 39.7[23] 21.6

6. Conclusion

In this paper we have shown that an EFT in which standard χPT is augmented by the addition
of a light scalar field, worked out initially by Soto, Talavera, and Tarrús in Ref. [9], provides a
consistent and accurate leading-order description of the σ -meson pole, the isoscalar ππ scattering
length, and the data for ππ scattering and γγ → π0π0 up to center-of-mass energies ≈ 500 MeV.
This obviates the need for the inconsistent treatment of the ππ amplitude in γγ→ π0π0 adopted in
Ref. [10]. We also found that the analytic result of Refs. [9, 11] for the σ -meson width is too large
by a factor of two.

We resum the scalar-meson’s self-energy in the vicinity of the resonance. This gives the lead-
ing contribution to the σ ’s width in χPTS. It also mandates a modification to the σ propagator that
makes it ∼ s−2 for s far from the σ pole. This produces quite a weak σ effect on the real s-axis,
which is where experiments are done.

Lastly, we observe that the power counting in which our leading-order calculation was derived
has some issues if its accuracy is reviewed a posteriori. For example, the s-channel σ pole is
nominally the LO mechanism [O(p0)] for s ∼ M2

σ . However, the results for ππ scattering show
that—after all the parameters are chosen—that s-channel σ pole is a fairly small correction to the
O(p2) χPT amplitude in this region.

Acknowledgments

This work was supported by the US Department of Energy under grant number DE-FG02-
93ER-40756. AT thanks the Mildred Mickel Hoover Dean’s fellowship for facilitating his partici-
pation in this meeting.

References

[1] J. R. Peláez, From controversy to precision on the sigma meson: a review on the status of the
non-ordinary f0(500) resonance, Phys. Rept. 658, 1 (2016). [arXiv:1510.00653 [hep-ph]].

[2] K. A. Olive et al., Review of Particle Physics, Chin. Phys. C 38, 090001 (2014).

[3] I. Caprini, G. Colangelo, and H. Leutwyler, Mass, and width of the lowest resonance in QCD, Phys.
Rev. Lett. 96, 132001 (2006). [hep-ph/0512364].

[4] G. Colangelo, J. Gasser, and H. Leutwyler, ππ scattering, Nucl. Phys. B 603, 125 (2001).
[hep-ph/0103088].

8



P
o
S
(
C
D
2
0
1
8
)
0
8
7

ππ scattering and γγ → ππ in the χPTS Arbin Thapaliya

[5] R. Garcia-Martin, R. Kaminski, J. R. Peláez, and J. Ruiz de Elvira, Precise determination of the
f0(600), and f0(980) pole parameters from a dispersive data analysis, Phys. Rev. Lett. 107, 072001
(2011). [arXiv:1107.1635 [hep-ph]].

[6] B. Moussallam, Couplings of light I=0 scalar mesons to simple operators in the complex plane, Eur.
Phys. J. C 71, 1814 (2011). [arXiv:1110.6074 [hep-ph]].

[7] R. J. Crewther and L. C. Tunstall, Status of Chiral-Scale Perturbation Theory, in proceedings of the
8th International workshop on the Chiral Dynamics PoS CD 15, 132 (2015) [arXiv:1510.01322
[hep-ph]].

[8] M. Golterman and Y. Shamir, Low-energy effective action for pions and a dilatonic meson, Phys. Rev.
D 94, no. 5, 054502 (2016). [arXiv:1603.04575 [hep-ph]].

[9] J. Soto, P. Talavera, and J. Tarrus, Chiral Effective Theory with A Light Scalar, and Lattice QCD,
Nucl. Phys. B 866, 270 (2013). [arXiv:1110.6156 [hep-ph]].

[10] L. Ametller and P. Talavera, Lowest resonance in QCD from low-energy data, Phys. Rev. D 89, no. 9,
096004 (2014); [arXiv:1402.2649 [hep-ph]]; Phys. Rev. D 92, 074008 (2015). [arXiv:1504.06505
[hep-ph]].

[11] M. Hansen, K. Langæble and F. Sannino, Extending Chiral Perturbation Theory with an Isosinglet
Scalar, Phys. Rev. D 95, no. 3, 036005 (2017). [arXiv:1610.02904 [hep-ph]].

[12] J. Gasser and H. Leutwyler, Quark Masses, Phys. Rept. 87, 77 (1982).

[13] A. Thapaliya and D. R. Phillips, The reactions ππ → ππ and γγ → ππ in χPT with an isosinglet
scalar resonance, Eur. Phys. J. A 53, no. 10, 206 (2017).

[14] P. C. Bruns, On the sigma sigma term, arXiv:1610.00119 [nucl-th].

[15] J. R. Batley et al. [NA48-2 Collaboration], Study of the decay phi —> pi0 pi0 gamma with the KLOE
detector, Eur. Phys. J. C70, 635-657 (2010).

[16] R. Garcia-Martin, R. Kaminski, J. R. Peláez, J. Ruiz de Elvira and F. J. Yndurain, The Pion-pion
scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV,
Phys. Rev. D 83, 074004 (2011) [arXiv:1102.2183 [hep-ph]].

[17] S. D. Protopopescu et al., A pi pi PHASE SHIFT ANALYSIS FROM REACTIONS pi+ p —> pi+ pi-
DELTA++ AND pi+ p —> K+ K- DELTA++ at 7.1-GeV/c in proceedings of Proc. Int. Conf. on
Experimental Meson Spectroscopy, Amer. Inst. Phys., 1972. p. 17-58.

[18] J. F. Donoghue, E. Golowich, B. R. Holstein, Dynamics of the Standard Model, p. 180, Cambridge
University Press, Cambridge, 1992.

[19] J. F. Donoghue, B. R. Holstein, and Y. C. Lin, The Reaction gamma Gamma —> pi0 pi0, and Chiral
Loops, Phys. Rev. D 37, 2423 (1988).

[20] H. Marsiske et al. [Crystal Ball Collaboration], A Measurement of π0π0 Production in Two Photon
Collisions, Phys. Rev. D 41, 3324 (1990).

[21] S. Uehara et al. [Belle Collaboration], High-statistics measurement of neutral pion-pair production in
two-photon collisions, Phys. Rev. D 78, 052004 (2008). [arXiv:0805.3387 [hep-ex]].

[22] M. Hoferichter, D. R. Phillips, and C. Schat, Roy-Steiner equations for gamma gamma -> pi pi, Eur.
Phys. J. C 71, 1743 (2011) [arXiv:1106.4147 [hep-ph]].

[23] J. Gasser, M. A. Ivanov, and M. E. Sainio, Low-energy photon-photon collisions to two-loops
revisited, Nucl. Phys. B 728, 31 (2005). [hep-ph/0506265].

9


