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Chiral effective field theory allows one to calculate the response of few-nucleon systems to ex-
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the constraints from chiral symmetry can then be implemented in nuclear structure factors that
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(a) (b) (c) (d)

Figure 1: Diagrams for the coupling of the WIMP current, indicated by the cross, to (a) single nucleons, (b)
pion loops, (c) pion-exchange diagrams, and (d) two-nucleon contact terms.

1. Introduction

If dark matter is composed of weakly interacting massive particles (WIMPs), a possible strat-
egy for discovery proceeds via direct-detection experiments, in which the nuclear recoil produced
by the scatter of WIMPs off atomic nuclei is sought, see [1–7] for some of the most recent ex-
clusion limits. However, the interpretation of these limits in terms of the properties of the WIMP
requires as critical input the local density and velocity distribution of the Galactic halo as well as
the response functions of the nuclear target. In the simplest case the information on the dark-matter
candidate can be subsumed into a single-nucleon cross section, in terms of which the exclusion
limits are typically presented as a function of the WIMP mass. For the nuclear physics input, one
needs nucleon matrix elements of the quark/gluon-level operators describing the interaction of the
WIMP with Standard-Model fields to define effective interaction operators in terms of hadronic
degrees of freedom, and then in a second step the embedding of these operators within the nuclear
states of interest. Chiral symmetry can play a role in both: for WIMP–nucleus scattering, with
reduced mass of the order of µNχ ∼ 100GeV and a relative velocity of v ∼ 10−3 the typical momen-
tum transfer q ≤ 2µNχv ∼ 200MeV is right in the vicinity of the pion mass, so that the effects of the
spontaneous breaking of the chiral symmetry of QCD need to be incorporated in the analysis. In
practice, chiral symmetry constrains the nucleon matrix elements and few-nucleon operators that
describe the coupling of the WIMP to nucleons, consistently with the description of nuclear forces.
Here, we will concentrate on the impact on the WIMP–nucleon interactions. We use chiral effective
field theory (EFT) [8–10], which allows one to study not only the currents that exist in the Standard
Model (vector, axial-vector), but also treat non-standard currents (scalar, pseudoscalar, tensor, . . .)
on the same footing based on their chiral realizations. The consequences of chiral symmetry for
WIMP–nucleus scattering, to varying degree, have been studied in [11–24], in the following, we
will discuss some selected aspects.

2. Chiral effective field theory and dark matter

The analysis of WIMP–nucleus scattering in chiral EFT allows one to systematically derive
the nuclear responses beyond the standard leading-order expressions—typically referred to as spin-
independent (SI) and spin-dependent (SD) responses depending on whether the non-relativistic
reduction gives a unity operator or the nucleon spin operator as in the AA contribution in (2.1)
below—while automatically implementing the constraints from the chiral symmetry of QCD. The
different classes of corrections are shown in Fig. 1: the single-nucleon contributions (a) and (b)
essentially reproduce the known chiral expansion of nucleon form factors, but the multi-nucleon
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Nucleon V A
WIMP t x t x

1b 0 1 + 2 2 0 + 2
V 2b 4 2 + 2 2 4 + 2

2b NLO — — 5 3 + 2

1b 0 + 2 1 2 + 2 0
A 2b 4 + 2 2 2 + 2 4

2b NLO — — 5 + 2 3

Nucleon S P
WIMP

1b 2 1
S 2b 3 5

2b NLO — 4

1b 2 + 2 1 + 2
P 2b 3 + 2 5 + 2

2b NLO — 4 + 2

Table 1: Chiral order ν of the one-body (1b), two-body (2b), and next-to-leading-order two-body (2b NLO)
contributions in the various channels, separated into time-like (t) and space-like (x) components for the vec-
tor and axial-vector operators. The +2 indicates a suppression that arises from the non-relativistic expansion
of the WIMP field if mχ ∼ mN , so that these terms can be ignored for a heavy WIMP. Table taken from [16].

diagrams (c) and (d) lead to genuinely new effects. Such two-body currents are well-established in
electromagnetic and weak transitions of atomic nuclei [25–29], with currents that have been worked
out up to one-loop order in the chiral expansion both for vector [30–35] and axial-vector [36, 37]
currents.

The starting point for the chiral analysis is then an effective Lagrangian for the interaction of
the WIMP χ with quark and gluon fields, e.g., we give here the quark operators for a spin-1/2
WIMP [38]

Lχ =
1

Λ3

∑
q

[
CS S

q χ̄χmqq̄q +CPS
q χ̄iγ5χmqq̄q +CS P

q χ̄χmqq̄iγ5q +CPP
q χ̄iγ5χmqq̄iγ5q

]
+

1
Λ2

∑
q

[
CVV

q χ̄γµχ q̄γµq +CAV
q χ̄γµγ5χ q̄γµq +CVA

q χ̄γµχ q̄γµγ5q +CAA
q χ̄γµγ5χ q̄γµγ5q

]
, (2.1)

where Λ denotes the scale of physics beyond the Standard Model to make the Wilson coefficients
C dimensionless, the sums extend over the quark fields, and indices S , P, V , A refer to the quantum
numbers of the operators in the WIMP and quark bilinears. The chiral orders at which the various
terms first arise are summarized in Table 1. The expected leading contributions for SI and SD
operators scale with ν = 0, 1b VV time-like and AA space-like. The table reproduces the most
important two-body corrections, in the AA [13, 14] and S S [11, 12, 17, 22, 24] channels, but shows
that relevant two-body currents can also arise for the AV and VA channels [16].

The impact of chiral symmetry is particularly noteworthy in the scalar channel, where the first
non-vanishing contribution only enters at ν = 2, the reason being that there is no scalar source in the
leading-order pion–nucleon (πN) Lagrangian. For this reason, two-body currents are suppressed by
only a single chiral order. Moreover, chiral symmetry is a key ingredient in the phenomenological
determination of the 1b matrix element, the πN σ-term [39–43], via the Cheng–Dashen low-energy
theorem [44,45]. In particular, it is well-known that the strong ππ rescattering slows down the chiral
expansion, in such a way that the full scalar form factor from dispersion theory should be employed
instead [46, 47].
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Figure 2: Level spectra for 131Xe (left) and 132Xe (right). Figure taken from [52].

Ideally, the many-body methods used to calculate the nuclei of interest are based on consistent
chiral interactions, but despite great progress in the study of electromagnetic and weak transi-
tions in medium-mass nuclei [29, 48–50] such ab initio methods are not yet available for nuclei
as heavy as xenon. Accordingly, the results presented here rely on the large-scale nuclear shell
model [51], which reproduces well nuclei relevant to direct-detection experiments, as shown for
xenon in Fig. 2. While currently we thus cannot rigorously quantify the nuclear-structure uncertain-
ties, the diagnostics available in ab initio approaches should enable better uncertainty quantification
in the future [53–55], again based on chiral EFT.

3. Coherently enhanced two-body currents

The scalar two-body currents are also special because they scale with the number of nucleons
A and thus inherit the coherent enhancement that characterizes the standard SI interaction, and
the same is true for a WIMP coupling with the trace anomaly θµµ or via a spin-2 operator. In [17,
22, 24] we developed the formalism to evaluate these two-body corrections in the nuclear shell
model, including a consistent implementation of contact operators by renormalization to the nuclear
binding energy. In particular, this leads to a decomposition for the WIMP–nucleus cross section
generalizing the standard SI expression [17, 24]

dσ
dq2 =

1
4πv2

∣∣∣∣∣∑
I=±

(
cM

I −
q2

m2
N

ċM
I

)
F M

I (q2) + cπFπ(q2) + cbFb(q2) +
q2

2m2
N

∑
I=±

cΦ′′

I F
Φ′′

I (q2)
∣∣∣∣∣2

+
1

4πv2

∑
i=5,8,11

∣∣∣∣∣∑
I=±

ξi(q, v⊥T )cM,i
I F

M
I (q2)

∣∣∣∣∣2, (3.1)

where q is the momentum transfer, v the WIMP velocity, and the c coefficients subsume nucleon
matrix elements as well as the Wilson coefficients from (2.1). Taking 132Xe as an example, our
results for the nuclear structure factors F (q2) are shown in Fig. 3. All our results are available as a
Python package in the form of a Jupyter notebook, which can be downloaded from [56].

The standard SI case is reproduced by omitting all terms in (3.1) except for cM
+ : the relation

σSI
χN = µ2

N |c
M
+ |

2/π establishes the connection to the usual formulation in terms of the single-nucleon
cross section σSI

χN (with reduced WIMP–nucleon mass µN). Similarly, one can visualize some of
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Figure 3: Nuclear structure factors for 132Xe. Figure taken from [24].

the other terms by means of single-particle cross sections, most notably, if only cπ is non-vanishing
the WIMP only interacts with a virtual pion exchanged between the nucleons in the nucleus, see
diagram (c) in Fig. 1. Limits on cπ derived under this assumption can then be interpreted in terms
of a WIMP–pion cross section, providing a constraint in the space of all WIMP models comple-
mentary to the standard SI cross section. Such a constraint has recently been presented for the first
time by the XENON collaboration [57], see Fig. 4. The argument is similar to searches for SD
interactions [58–61]: if the leading SI contribution is suppressed, e.g., in heavy-WIMP EFT [62]
or in the context of so-called blind spots [63–65], subleading corrections become more important
and may dominate the nuclear response. Of these subleading responses the WIMP–pion coupling
is coherently enhanced compared to the SD channel.

4. Discriminating nuclear response functions

Given the different terms in the decomposition (3.1), it is natural to ask how, in the case of
a detection, the various contributions could be disentangled to gain insights into the nature of the
WIMP. For instance, the separation of isoscalar and isovector terms could be achieved by com-
paring results for target materials with different N/Z ratios. Another strategy could rely on the
q-dependence of the structure factors, which could be used to distinguish the different responses.
In [66] we studied to what extent such a discrimination would work in practice, starting from real-
istic detector settings for XENON100 [67], supplemented by projections all the way to a potential
DARWIN experiment [68]. A measure of the discrimination power with respect to the isoscalar SI
response F M

+ vs. the exposure is shown in Fig. 5, illustrating the key results from [66]: a separa-
tion via the q-dependence of the structure factors is possible in many cases as long as the overall
interaction strength does not become too small. An exception concerns the isovector SI response
F M
− , which proves too similar to F M

+ , see Fig. 3. In contrast, structure factors that vanish at q = 0

4
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Figure 4: Limits on the scalar WIMP–pion cross section from XENON1T. The green and yellow bands
refer to the 1σ and 2σ expected exclusion limits, respectively, the solid line to the observed limit. Figure
taken from [57].

are most easily differentiated, but already for the scalar two-body currents encoded in Fπ (relevant
for the WIMP–pion coupling) the q-dependence does contain useful additional information.

5. Limits on Higgs-portal dark matter

In Higgs-portal models for dark matter the WIMP interacts with the Standard Model via the
exchange of the Higgs boson H. The WIMP itself can be either a scalar S , with interaction term
LS = H†H S 2, a vector V , with LV = H†H VµVµ, or a fermion f , with L f = H†H f̄ f , see, e.g., [69–
72]. If such couplings exist and if mχ is less than half the mass of the Higgs boson, the Higgs
should decay into a pair of dark-matter particles, and this process can be constrained by searching
for so-called invisible Higgs decays [73, 74]. However, to be able to compare LHC and direct-
detection limits, input for the Higgs coupling to the nucleon is required, for which typically the
range fN = 0.260 . . .0.629 had been employed, leading to the gray bands in Fig. 6.

In [22] we pointed out that this input used for the scalar couplings was outdated, so that with
modern input the translation of limits on invisible Higgs decays to direct-detection cross sections
could be sharpened significantly. In addition, given that two-body currents are effectively subsumed
in the single-nucleon cross sections in the analysis of direct-detection experiments, this effect needs
to be included in the conversion of the LHC limits as well. Since the effects from the heavy quarks
are effectively included in terms of the QCD trace anomaly θµµ, one needs both the scalar and the θµµ
two-body currents. The latter receives contact-term contributions, see diagram (d) in Fig. 1, which
we renormalize to the nuclear binding energy by making use of the fact that the contact terms are
the same as the ones that appear in the leading nucleon–nucleon potential. Combining one- and
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from [66].

two-body contributions, we obtain

fN = f 1b
N + f 2b

N = 0.308(18), (5.1)

leading to the colored bands in Fig. 6.

6. Conclusions

We have reviewed the application of chiral EFT to the interpretation of direct-detection
searches for dark matter. In particular, chiral symmetry imposes constraints on both the nucleon
matrix elements and the nuclear structure factors, both of which are required to cross nuclear and
hadronic scales and eventually connect the measured limits on the WIMP–nucleus scattering rate to
the properties of the WIMP. We presented several applications of the chiral-EFT formalism, rang-
ing from limits on WIMP–pion interactions to improved limits on Higgs-portal dark matter. The
currently most comprehensive work on chiral-EFT-based structure factors [14,24] gives results for
fluorine, silicon, argon, germanium, and xenon, including the matching relations for spin-1/2 and
spin-0 WIMPs for a wide variety of effective operators. All results are also publicly available in a
Python notebook [56].
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