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In this proceeding I briefly review current status of the construction of nuclear electro-weak cur-
rents within chiral effective field theory. I show that gauge and chiral symmetry requirements
lead to the well-known continuity equations for the current and charge operators which, however,
get modified at higher orders. Regularization of the current will be also discussed. I demonstrate
that implementation of a cutoff regulator in a naive way leads to violation of chiral symmetry. To
respect the underlying symmetries I propose to use higher derivative regularization in the nuclear
forces and currents.
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1. Nuclear Chiral Effective Field Theory

Chiral effective field theory (EFT) is an effective field theory of quantum chromodynamics
(QCD) which works in the energy sector where momenta of pions/nucleons are much lower than
chiral symmetry breaking scale Λχ ∼ 1GeV. Relevant symmetries of QCD like e.g. chiral symme-
try is by construction implemented in chiral EFT in a most general way. In the chiral EFT all the
processes are described by point-like pions and nucleons which gain their structure in a perturba-
tive way from loop corrections. Due to confinement this is an efficient way to proceed since in the
low energy sector these are the observed degrees of freedom.

Chiral EFT has been successfully applied to meson and a nucleon sector in entirely perturba-
tive way. In the two- and more-nucleon case, however, perturbative approach is not appropriate
to describe nuclei. These are bound states of nucleons which can be interpreted as poles in the
S-matrix and close to the poles any perturbation theory does obviously not converge. Almost
three decades ago, Weinberg in his seminal papers suggested to use chiral perturbation theory to
calculate an effective interaction between nucleons (known as nuclear forces). Bound state ener-
gies and scattering off nuclei can be approached numerically by solving Schröding equation in a
non-perturbative way [1], see also [2] for a review on this topic. This path has been followed in
the last three decade by several groups such that chiral nuclear forces have been worked out up
to next-to-next-to-next-to-next-to-leading-order (N4LO) in chiral expansion. Two-nucleon observ-
ables calculated with N4LO forces are described with an excellent precision [3]. At the same time
the number of fitted parameters in N4LO forces is significantly reduced compared to phenomeno-
logical potentials [3] which clearly underlines the importance of two-pion-exchange contributions
coming as prediction in the chiral EFT framework.

Within the same formalism one can calculate nuclear electroweak current operators consistent
with the nuclear forces. The field was pioneered by Park et al. [4, 5] and was matured by two groups
who calculated leading one-loop corrections to electroweak current operators up to N3LO using
two different methods to account for off-shell nuclear effects: the unitary transformation technique
(UT) used by the Bochum-Bonn group [6],[7] and the framework of time-ordered perturbation
theory (TOPT) used by the Pisa-JLab group [8, 9, 10, 11].

The proceeding is structured in three parts. In the first part I will briefly review our activities
on the construction of the electroweak current operator calculated within UT formalism. In the
second part I will compare our results with the results discussed by Pisa-Jlab group. In the third
part the emphasis will be on the symmetry preserving regulator of the current. I will demonstrate
that a naive multiplication of the current operators by a cutoff regulator and its convolution with
chiral EFT wave functions of the deuteron leads to violation of chiral symmetry. This calls for
consistent regularization of forces and currents which preserve underlying symmetries. Higher
derivative regularization introduced by Slavnov in the early seventies [13] seems to be a promising
solution.

2. Electroweak Current Operators within UT

Unitary transformation technique is a powerful tool to decouple pion-nucleon and purely nu-
cleonic states in the Fock space reducing in this way a quantum field theoretic problem to a quan-
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tum mechanical one. In order to formulate the problem we denote by λ and η projection oper-
ators which project the states to the states with at least one pion and no pions, respectively. The
Schrödinger equation in the presence of external sources can be rewritten into the form(

η H η η H λ

λ H η λ H λ

)(
η |Ψ〉
λ |Ψ〉

)
= i

∂

∂ t

(
η |Ψ〉
λ |Ψ〉

)
. (2.1)

The idea is to apply a unitary transformation on the Hamilton operator H in order to blockdiago-
nalize the matrix on the lhs of Eq. (2.1). The transformed Schrödinger equation gets the form[

U†H U +

(
i

∂

∂ t
U†
)

U
]

U†|Ψ〉 = i
∂

∂ t
U†|Ψ〉. (2.2)

We require

η
(
U†H U

)
s λ = λ

(
U†H U

)
s η = 0, (2.3)

where

Os = O|a=0,v=0,s=mq,p=0, (2.4)

and O stays for any operator. Here mq is a light quark mass and a,v,s, p denote external axial,
vector, scalar, pseudoscalar sources, respectively. We denote a strong interacting part of the Hamil-
tonian by

W = η
(
U†HU

)
s η . (2.5)

Note that, although possible, we do not require the full operator in the rectangular bracket of
Eq. (2.2) to be block-diagonal. It is enough that the strong interacting part of the Hamiltonian
is block diagonal (see Eq. (2.3)). The reason is that we are not interested in the Hamilton oper-
ator in the presence of a cloud of external axial, vector or pseudoscalar sources. We are rather
interested in a Hamiltonian in the presence of just one (or, not in this proceeding, maybe two)
external sources. This drastically simplifies a quantum field theoretical problem even without full
block-diagonalization.

Nuclear current operators can be extracted from first functional derivative of the rotated Hamil-
tonian. In momentum space e.g. vector, axial and pseudoscalar vector operators are defined by

Ṽ j
µ(k) =

δHeff

δ ṽµ

j (k)

∣∣∣∣
s
, Ã j

µ(k) =
δHeff

δ ãµ

j (k)

∣∣∣∣
s
, P̃ j(k) =

δHeff

δ p̃ j(k)

∣∣∣∣
s
, (2.6)

where effective Hamiltonian is

Heff = U†H U +

(
i

∂

∂ t
U†
)

U, (2.7)

and Fourier transformed sources are defined by [6]

X(x) =
∫

d4qe−iq·xX̃(q), X ∈
{

v j
µ ,a

j
µ , p j

}
. (2.8)
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Since Heff is not block-diagonalized the current operators are also not block-diagonalized which
means that even if in the initial state we have a purely nucleonic state in the final state we can
have a state with zero, one, or even more pions. However, since in the practical calculations the
currents will be convoluted with nuclear wave functions we only need to consider purely nucleonic
initial and final states. Other states will be important e.g. if we are interested in Compton scattering
where we deal with two current operators. In this case other matrix elements like effective pion-
electroproduction matrix-element of the vector current 〈NN|V j

µ(k)|πNN〉 need to be worked out.
In the derivation of the current operator we use unitary transformations which explicitly de-

pend on external sources and for this reason are time-dependent such that in general a time deriva-
tive of the unitary transformation is non-zero. This leads to explicit energy-transfer dependence
of the currents and for this reason to a modification of continuity equations for axial and vector
current operators:

[
W, Ṽ0(~k,0)−

∂

∂k0
~k ·~̃V(~k,k0)+

∂

∂k0

[
W, Ṽ0(~k,k0)

]]
=~k ·~̃V(~k,0), (2.9)[

W, Ã0(~k,0)−
∂

∂k0
~k ·~̃A(~k,k0)+

∂

∂k0

[
W, Ã0(~k,k0)

]
+mq i

∂

∂k0
P̃(~k,k0)

]
=~k ·~̃A(~k,0)−mq i P̃(~k,0), (2.10)

see [6] for derivation of these expressions1. Here we, as usual, denote by bold letters matrix
elements in isospin space

X = ~X ·~τ, (2.11)

where τi with i = 1,2,3 are Pauli matrices in isospin space. Note the direct consequence form
Eq. (2.9) is that the knowledge of the current in the Breit frame, where k0 = 0 is valid, is not
enough to check the continuity equations. One needs also an information about energy-transfer
derivatives of the current operators.

As suggested by Weinberg [1] we can use chiral perturbation theory in order to calculate Heff.
This was used to calculate nuclear forces W −ηH0η , where H0 denotes a free Hamiltonian, and
nuclear current operators V j

µ ,A
j
µ ,P j. A power counting, that tells which Feynman diagram belongs

to which order in the chiral expansion, can be derived from a naive dimensional analysis. Denoting
by

Q ∼ {p/Λb,Mπ/Λb}, (2.12)

where p stays for small momenta, Mπ for pion mass and Λb ∼ 600 MeV is a breakdown scale of the
chiral expansion, we can extract the chiral dimension ν of the corresponding diagram which counts
as Qν from a naive dimensional analysis. For nuclear forces the chiral dimension of a connected
diagram is given by

ν = −2+∑
i

Viκi, (2.13)

1We assume in these expressions a linear dependence on the energy transfer. For more complicated energy-transfer
dependence of the currents the continuity equations look more complicated.
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while the chiral dimension of the nuclear charge and current operators is given by

ν =−3+∑
i

Viκi . (2.14)

Here κi denotes inverse mass dimension of the coupling constant at the vertex “i” and Vi denotes
how many times the vertex “i” appears in a considered diagram. The inverse mass dimension can
be expressed in terms of the chiral dimension of the vertex d, the number of nucleon fields a, the
number of pion fields b and the number of external sources c

κ = d +
3
2

a+b+ c−4. (2.15)

The leading order for nuclear forces starts with one-pion-exchange and contact interactions with
ν = 0 and are by now calculated up to ν = 5 which is N4LO. Note that there are no contributions
to the nuclear forces at ν = 1 and next-to-leading-order (NLO) contributions starts with ν = 2. For
the vector and axial vector currents the leading order starts from ν = −32. These are the charge
operator of single nucleon vector current and a current operator of the single nucleon axial vector
current. The calculations for vector and axial vector current have been performed up to ν = 1 which
are next-to-next-to-next-to-leading-order (N3LO) calculations. Note that similar to the nuclear
forces there are no contributions at the order ν = −2 and for this reason NLO contribution shows
up first at ν =−1. In tables 1 and 2, 3 and 4 all possible contributions up to N3LO are summarized
for vector and axial vector operators. Note that the nucleon mass m is counted as

m∼ Λ
2
b/p. (2.16)

3. Electroweak Currents within UT vs TOPT

As already mentioned in the introduction, in parallel to our activities within UT techniques
electroweak currents have been calculated within TOPT technique by Pisa-JLab group [8, 9, 10,
11]. The current operators in both calculations should agree with each other modulo unitary trans-
formation. For vector currents it has been shown that there exists a unitary transformation which
transforms UT currents into TOPT currents [11, 12]. The situation is more complicated for the
axial vector currents. In this case the UT and TOPT results disagree even at the point of vanishing
momentum transfer. An extensive discussion on this issue can be found in [16]. It remains to be
seen in the future if the currents are unitary equivalent. If this transformation exists it should de-
pend explicitly on the axial vector sources. The reason is that the TOPT current satisfies (at least
in the chiral limit) an ordinary continuity equation [8][

W, Ṽ0(~k,0)
]
= ~k ·~̃V(k̃,0),[

W, Ã0(~k,0)
]
= ~k ·~̃A(k̃,0)−mq i P̃(k̃,0), (3.1)

which means that TOPT currents do not depend on energy transfer. Since our currents do depend
on the energy transfer they satisfy continuity equations in the form of Eq. (3.1) and can only be
transformed to TOPT currents (if possible) with source dependent unitary transformations.

2For single nucleon contributions we need to subtract three chiral dimension due to the delta function of the spectator
nucleon.
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Table 1: Chiral expansion of the nuclear electromagnetic current operator up to N3LO. LO, NLO, N2LO
and N3LO refer to chiral orders Q−3, Q−1, Q0 and Q, respectively. The single-nucleon contributions are
given in Eqs. (2.7) and (2.16) of [7].

order single-nucleon two-nucleon three-nucleon

LO — — —

NLO ~V1N:static ~V2N:1π , Eq. (4.16) of [14] —

+ ~V1N:1/m

N2LO ~V1N:static — —

N3LO ~V1N:static ~V2N:1π , Eq. (4.28) of [14] —

+ ~V1N:1/m + ~V2N:2π , Eq. (2.18) of [15]

+ ~V1N:off−shell + ~V2N:cont, Eq. (5.3) of [14]

Table 2: Chiral expansion of the nuclear electromagnetic charge operator up to N3LO. LO, NLO, N2LO and
N3LO refer to chiral orders Q−3, Q−1, Q0 and Q, respectively. The single-nucleon contributions are given
in Eq. (2.6) of [7].

order single-nucleon two-nucleon three-nucleon

LO V0
1N:static — —

NLO V0
1N:static — —

N2LO V0
1N:static — —

N3LO V0
1N:static V0

2N:1π
, Eq. (4.30) of [14] V0

3N:π
, Eq. (4.1) of [7]

+ V0
1N:1/m + V0

2N:2π
, Eq. (2.19) of [15] + V0

3N:π
, Eq. (4.2) of [7]

+ V0
1N:1/m2 + V0

2N:cont, Eq. (5.6) of [14] + V0
3N:cont, Eq. (4.3) of [7]

+ V0
2N:1π,1/m, Eq. (4.30) of [14]

4. Towards Consistent Regularization of the Currents

Sofar all reported calculations of current operators have been performed by using dimensional
regularization. Naively one could take these operators and start to look at their expectation values
in order to study observables. This is indeed what has been done by various calculation with TOPT
currents, see e.g. [17] for a review. All these calculations should be considered as a hybrid approach
where no claim on consistency between nuclear forces and currents is made. Even if both nuclear
forces and currents are calculated from the same framework of chiral EFT the use of different
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Table 3: Chiral expansion of the nuclear axial current operator up to N3LO. LO, NLO, N2LO and N3LO refer
to chiral orders Q−3, Q−1, Q0 and Q, respectively. All equation references are understood to be from [6].

order single-nucleon two-nucleon three-nucleon

LO ~A1N:static, Eq. (4.2) — —

NLO ~A1N:static, Eq. (4.7) — —

N2LO — ~A2N:1π , Eq. (5.7) —

+ ~A2N:cont, Eq. (5.8)

N3LO ~A1N:static, Eq. (4.46) ~A2N:1π , Eq. (5.13) ~A3N:π , Eq. (6.2)

+ ~A1N:1/m,UT′ , Eq. (4.13) + ~A2N:1π,UT′ , Eq. (5.23) + ~A3N:cont, Eq. (6.6)

+ ~A1N:1/m2 , Eq. (4.18) + ~A2N:1π,1/m, Eq. (5.19)

+ ~A2N:2π , Eq. (5.29)

+ ~A2N:cont,UT′ , Eq. (5.43)

+ ~A2N:cont,1/m, Eq. (5.41)

Table 4: Chiral expansion of the nuclear axial charge operator up to N3LO. LO, NLO, N2LO and N3LO refer
to chiral orders Q−3, Q−1, Q0 and Q, respectively. All equation references are understood to be from [6].

order single-nucleon two-nucleon three-nucleon

LO — — —

NLO A0
1N:UT′ , Eq. (4.4) A0

2N:1π
, Eq. (5.3) —

+ A0
1N:1/m, Eq. (4.10)

N2LO — — —

N3LO A0
1N:static,UT′ , Eq. (4.14) A0

2N:1π
, Eq. (5.14) —

+ A0
1N:1/m, Eq. (4.22) + A0

2N:2π
, Eq. (5.30)

+ A0
2N:cont, Eq. (5.34)
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regularizations (cut off vs dimensional regularization) leads to a chiral symmetry violation in the
very first iteration of the current with nuclear forces. Here is the explanation:

In order to solve the Schrödinger equation nuclear forces have to be regularized. The usual
way is to use the cutoff regularization. Let us for example choose a semi-local regulator discussed
in [3]. The regularized form of the long-range part of the leading order nuclear force, which is one
pion exchange diagram, is given by

V1π,Λ = − g2
A

4F2
π

τ1 · τ2
~σ1 ·~q~σ2 ·~q

q2 +M2
π

e−
q2+M2

π

Λ2 , (4.1)

where ~q denotes momentum transfer between two nucleons. The nice property of this regulator
is that it does not affect long range part of the nuclear force at any power of 1/Λ. On the other
hand a pion-pole contribution proportional to gA of the relativistic correction of the axial vector
two-nucleon current is given by

~A(Q,gA)
2N:1π,1/m =

gA

8F2
π m

iτ1× τ2
~q1 ·~σ1

q2
1 +M2

π

~k
k2 +M2

π

[
i~k ·~q1×~σ2−~k1 ·~q1 +~k2 · (~q1 +~k)

]
+ 1 ↔ 2 , (4.2)

where~k is the momentum transfer of the axial vector current, and other momenta are defined by

~qi = ~p′i−~pi, ~ki =
~p′i +~pi

2
, i = 1,2, (4.3)

and momenta ~p′i and ~pi correspond to the final and initial momenta of the i-th nucleon, respectively.
Note that this is not the only contribution to the relativistic corrections of the current, but only that
which is proportional to gA. Complete expression (including terms proportional to g3

A) for the
relativistic corrections can be found in [6]. After we regularized the nuclear force and the axial
vector current we can perform the first iteration and take Λ→ ∞ limit:

~A(Q,gA)
2N:1π,1/m

1
E−H0 + iε

V1π,Λ +V1π,Λ
1

E−H0 + iε
~A(Q,gA)

2N:1π,1/m =

Λ
g3

A

32
√

2π3/2F4
π

(τ1− τ2)
~k

k2 +M2
π

~q1 ·~σ1 +1 ↔ 2 +O(Λ0). (4.4)

Since the one loop amplitude should be renormalizable there should exist a counter term which
absorbs the linear singularity in Λ. From Eq. (4.4) we see that this should be a contact two-
nucleon interaction with one pion coupling to it. However, there is no counter term like this in
chiral EFT. Such counter term requires derivative-less coupling of the pion which is forbidden by
the chiral symmetry: There exists only a counter term proportional to ~k ·~σ1, but there is none
which is proportional to ~q1 ·~σ1. Here~k is the momentum of the pion coupling to the two-nucleon
interaction.3 If there is no counter term which absorbs the linear cutoff singularity there should be
some cancelation in the amplitude with other terms. Indeed the same singularity but with opposite

3At higher orders one can construct derivative-less pion-four-nucleon interactions by multiplying low energy con-
stants with M2

π . They are coming from explicit chiral symmetry breaking by finite quark mass. However, at the order Q
we can not construct a counter term like this.

7



P
o
S
(
C
D
2
0
1
8
)
0
9
8

Electroweak Current Operators in chiral EFT Hermann Krebs

sign we would get for the static limit of the axial vector current of the order Q if we would calculate
the current by using cutoff regularization. Axial vector current at the order Q, however, is calculated
by using dimensional regularization and is finite. It also remains finite if we just multiply the current
with any cutoff regulator we want. So at the level of the amplitude the mismatch between the cutoff
and the dimensional regularization used in the construction of operators leads to a violation of chiral
symmetry at one-loop level which, however, is the order of accuracy of our calculations. So we see
that it is dangerous to multiply the current operators calculated within dimensional regularization
by some cutoff regulator and calculate expectation values of this. With the similar arguments one
can show that dimensionally regularized three-nucleon forces at the level of N3LO, which were
published in [20, 21], can not be used in combination with the cutoff regularized two-nucleon
forces at the same order. The mismatch between dimensional and cutoff regularization will lead
also in this case to a violation of the chiral symmetry at the one loop level.

In order not to violate the chiral symmetry we need to calculate both nuclear forces and cur-
rents with the same regulator. On top of it the regulator which we choose should be symmetry
preserving. One possibility to construct a regulator, which manifestly respects the chiral symme-
try, was proposed more than four decades ago by Slavnov [13], where he introduced a so called
higher derivative regularization in a study of non-linear sigma model. Recently, first applications
of this technique to the chiral EFT have been discussed in the literature [18, 19]. Construction of
consistent nuclear forces and currents within a similar approach is work in progress.
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