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1. Introduction

Recently, the semi-local momentum-space regularized (SMS) potential up to fifth order (N4LO)
in chiral EFT has been published [1]. For the SMS potential, we have maintained the idea of a local
regularization for the long-range interaction previously employed in Refs. [2, 3] while the actual
implementation has been carried out in momentum space in anticipation of consistently regularized
three-nucleon forces (3NF) and current operators. Additionally, several improvements towards pre-
cision physics have been applied to the chiral potentials of Ref. [1]. First, we employ values for
the πN LECs from the recent Roy-Steiner equation analysis of πN scattering [4], which are more
precise than those from previous extractions. Further, we have extracted the nucleon-nucleon (NN)
LECs directly from NN scattering data instead of relying on the Nijmegen partial-wave analysis
[5]. To be more specific, we use the recent 2013 Granada database [6] for our extraction. Mo-
tivated by the existence of some high-precision measurement of proton-proton observables which
are sensitive to the proper description of F-waves, we added the leading F-wave contact interactions
which start to contribute at N5LO to the N4LO potential. The resulting N4LO+ potential achieves
a value of χ2/datum ∼ 1 for the description of the NN scattering database and thus qualifies as a
partial-wave analysis.

However, the inclusion of isospin-breaking effects in Ref. [1] has been limited to the pion-mass
splitting in the one-pion exchange potential and charge-dependent short-range interactions in the
1S0 partial wave. While these assumptions about isospin-breaking in the nuclear force have been
widely employed and allow for a χ2/datum∼ 1 description for the scattering data, the framework
of chiral EFT allows for a systematic incorporation of isospin-breaking effects beyond the ones
mentioned above. In this work, we will discuss a complete inclusion of isospin-breaking effects
up to N4LO in the SMS potential. With the previously achieved precision of χ2/datum ∼ 1 we
now feel confident to refine our analysis and study the impact of isospin-breaking effects on the
extracted phaseshifts.

As a first step in this direction, we will discuss the isospin-breaking potential and its regu-
larization in Section 2. First results for the parameter-free potentials and their contributions to
phaseshifts are shown in Section 3. Finally, we conclude in Section 4.

2. Isospin-breaking NN interactions

Isospin symmetry is broken by both strong and electromagnetic effects. On the level of QCD,
the fundamental theory underlying chiral EFT, strong isospin-breaking is caused by the mass differ-
ences between the up and down quarks while electromagnetic isospin-breaking originates from the
different charges of the up and down quarks. In the framework of chiral EFT, where the effective
degrees of freedom are nucleons and pions, these isospin-breaking effects among quarks translate
to a string of isospin-breaking interaction terms between pions and nucleons in the Lagrangian,
which generate e.g. the mass differences between the neutron and the proton as well as between
charged and neutral pions. Due to the smallness of these contributions, we do not modify the free
Lagrangian mass term to account for the different physical masses of those particles, but rather
generate a string of interaction vertices proportional to the strong or electromagnetic contributions
to δM2

π =M2
π±−M2

π0
and δm =mp−mn, from which the corresponding isospin-breaking diagrams
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can be calculated perturbatively. The relevant expansion parameter for strong isospin-breaking is
εM2

π with

ε ≡ md−mu

md +mu
, (2.1)

where mu and md are the masses of the up and down quarks, respectively. On the other hand,
electromagnetic isospin-breaking in nuclear forces can be counted in powers of e2, where e is the
elementary charge. It is convenient to have a unified power counting scheme in only one variable
and assign the various isospin-breaking terms to specific orders in the chiral expansion. For this
purpose, we adopt the power counting introduced in Ref. [7] and count the additional parameters
as

ε ∼ e∼ Q
Λχ

. (2.2)

Additionally, photon loops are counted as

e2

(4π)2 ∼
Q4

Λ4
χ

, (2.3)

which accounts for the appearance of the numerically small 1/(4π)2 factor in a phenomenologi-
cal way. In the following, we will distinguish between charge independence-breaking (CIB) and
charge symmetry-breaking (CSB) potentials. CIB potentials (also called class II isospin-breaking
forces in the classification scheme of Ref. [8]) are proportional to the isospin operator τ3

1 τ3
2 and

maintain charge symmetry, i.e. are identical for proton-proton and neutron-neutron pairs, while
CSB potentials do not. CSB potentials include both class III- (∝ τ3

1 + τ3
2 ) and class IV- (∝ τ3

1 − τ3
2

or (τ1× τ2)3) forces, the former of which conserve total isospin while the latter mix isoscalar and
isovector channels. Class IV contributions can be generally assumed to be very small and we
neglect them here. In the following, the term "CSB" will always refer to class III forces.

2.1 One-pion exchange potential

The general form of the one-pion exchange potential (OPEP) without enforcing the isospin
limit is well-known:

V pp
1π

= f 2
p V1π(Mπ0),

V np
1π

= − f 2
0 V1π(Mπ0)+(−1)t+12 f 2

c V1π(Mπ±), (2.4)

V nn
1π = f 2

n V1π(Mπ0),

with t being the two-nucleon total isospin, f 2
0 = fp fn and

V1π(Mi) =−
4π

M2
π±

~σ1 ·~q ~σ2 ·~q
~q2 +M2

i
. (2.5)

Clearly, the CIB due to the pion mass difference is taken into account exactly (i.e. up to infi-
nite order) in eq. (2.4) by employing the correct physical masses of the exchanged pions in the
propagators. The one-pion exchange has been the most important model-independent ingredient
of the nuclear force since the early days of nuclear physics. Similarly, the CIB due to the pion
mass difference in the OPEP yields the dominant long-range isospin-breaking contribution to the
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nuclear force and has been incorporated in all modern high-precision NN potentials and PWAs
(e.g. Refs. [5, 6, 10]). While there is universal agreement on the CIB OPEP due to the different
physical pion masses, the situation is less clear for the charge-dependence of the OPEP coupling
constant. There have been various extractions of f 2

p , f 2
0 and f 2

c from both πN and NN data over the
last decades, see Ref. [11] for a historical overview. One of the most noted results are the determi-
nations of the Nijmegen group, which suggest no charge-dependence of the coupling constant, i.e.
f 2
p = f 2

0 = f 2
c ≡ f 2, within the obtained accuracy.

In chiral EFT, the charge-independent coupling constant of the leading order OPEP is given
as f 2 = M2

π±g2
A/(16πF2

π ). Starting at N2LO in our power counting scheme, the OPEP coupling
constants receive additional charge-dependent contributions from strong isospin-breaking terms
∝ 2d17−d18−2d19 followed by additional charge-dependent contributions proportional to the elec-
tromagnetic LECs g3 and g4 at N3LO. However, the values of these LECs are unknown. It seems
therefore unavoidable to directly extract f 2

p , f 2
0 and f 2

c from NN scattering data in order to study
the charge-dependence of the OPEP coupling constants.

At N3LO, the OPEP receives additional isospin-breaking contributions proportional to δm2

and δm/m. The former is given by

V (4)
1π

=−δm2 g2
A

4F2
π

~σ1 ·~q~σ2 ·~q(
q2 +M2

π±

)2

(
τ1 · τ2− τ

3
1 τ

3
2
)
. (2.6)

The latter is a class IV isospin-breaking term and thus mixes isoscalar and isovector channels. As
mentioned above, we neglect it here, see Ref. [9] for details.

Finally, at N3LO we also include the irreducible πγ exchange potential [12, 13]

Vπγ(~q) =−
αg2

A
8πF2

π

[
1
q2 −

(
M2

π±−q2
)2

q4
(
M2

π±+q2
) ln

(
1+

q2

M2
π±

)]
~σ1 ·~q~σ2 ·~q

(
τ1 · τ2− τ

3
1 τ

3
2
)
, (2.7)

which is an electromagnetic correction to the the OPEP.

2.2 Two-pion exchange potential

The spin-isospin structure of the isospin-breaking two-pion exchange potential (TPEP) in
momentum-space is given as

V (~q) =
(
V II

C +V II
S ~σ1 ·~σ2 +V II

T ~σ1 ·~q~σ2 ·~q
)
(τ3

1 τ
3
2 − 1

3 τ1 · τ2)

+
(
V III

C +V III
S ~σ1 ·~σ2 +V III

T ~σ1 ·~q~σ2 ·~q
)
(τ3

1 + τ
3
2 ). (2.8)

Here the superscript of the scalar functions V refers to the isospin-breaking classes II and III while
the subscripts C,S,T denote central, spin-spin and tensor potential, respectively. Up to N4LO,
terms proportional to the pion mass difference δM2

π are entirely CIB and thus contribute to V II
X

while terms proportional to the nucleon mass difference are CSB and hence contribute to V III
X

where X collectively denotes {C,S,T}. See Ref. [9] and Ref. [14] for expressions.1

The isospin-breaking TPEP is almost entirely parameter-free in the NN system. Beside the
physical nucleon mass difference δm we also use the purely strong mass difference δmstr =−2.05

1Eq. (2.11) of Ref. [14] corrects a misprint due to a missing factor of 1/2 in eq. (3.52) of Ref. [9].
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MeV [15] to fix these contributions. However, the box-diagram at N4LO involves the isospin-
breaking πN vertex ∝ β = εM2

π(2d17−d18−2d19) and contributes to

V III(5)
T =− 1

q2V III(5)
S =− g2

A
16π2F4

π

L(q)(δmc4 +gAβ ), (2.9)

where the logarithmic loop function L(q) is given by

L(q) =

√
q2 +4M2

π

q
ln

√
q2 +4M2

π +q
2Mπ

. (2.10)

As discussed in Sec. 2.1, this vertex also contributes to OPEP coupling constants and, following
the suggestion of Ref. [9], can be expressed at N4LO as

β =
f 2
p − f 2

n

8 f 2
c

, (2.11)

modulo higher order corrections. Thus its contribution to the CSB TPEP can be properly quantified
once the charge-dependent OPEP coupling constants have been extracted.

2.3 Contact interactions

In addition to the isospin-breaking long-range potential there exist also isospin-breaking con-
tributions to the short-range contact potential. Up to N4LO, there are both CIB and CSB contri-
butions to the derivative-less contact interactions entering the 1S0 channel as well as CSB contact
terms with two derivatives entering both S- and P-waves. The partial-wave matrix elements are
given as

〈1S0, pp|V II+III
cont |1S0, pp〉 = β̃

pp
1S0 +β1S0 (p2 + p′2)

〈1S0,nn|V II+III
cont |1S0,nn〉 = β̃

nn
1S0−β1S0 (p2 + p′2) (2.12)

〈3Pi, pp|V III
cont|3Pi, pp〉 = −〈3Pi,nn|V III

cont|3Pi,nn〉= β3Pi pp′,

with i = {1,2,3}. The isospin-breaking S-wave contact potential has already been included in the
analysis of Ref. [1] while isospin-breaking short-range effects in P-waves have not been taken into
account yet.

2.4 Regularization

As this work extends the NN potentials of Ref. [1], it is clear that we also employ the same
regularization prescription for the new isospin-breaking terms. Before discussing the peculiari-
ties in regularizing these additional terms, we would like to give a brief overview of the semilo-
cal momentum-space regularization introduced in Ref. [1]. It employs a nonlocal regulator for
momentum-space matrix elements of contact interactions

Vcont(p′, p)→Vcont(p′, p) e−
p′2+p2

Λ2 (2.13)

as well as a local regulator for the pion-exchange part of the potential, hence the term semilocal.

4



P
o
S
(
C
D
2
0
1
8
)
1
0
6

NN Partial wave analysis in chiral EFT Patrick Reinert

In the following, we will elaborate on this local regularization for the long-range potential. Its
main idea is to regularize the static pion propagators with a gaussian form factor

1
l2 +M2

π

→ 1
l2 +M2

π

e−
l2+M2

π

Λ2 (2.14)

with l = |~l| and~l being the three-momentum of the exchanged pion. This results in properly regu-
larized expressions for the long-range OPEP and TPEP, which, however, still contain an admixture
of locally-regularized short-range interactions. We therefore make use of the contact interactions
allowed by power counting at a particular chiral order and subtract them from the long-range po-
tential with their coefficients fixed by the requirement that the coordinate-space potentials and as
many derivatives thereof as possible vanish at the origin. This procedure yields a clean separation
between long-range pion exchanges and short-range contact interactions and leads to a qualitatively
similar potential as the coordinate-space regulator employed in Refs. [2, 3].

Regularization of the OPEP in eq. (2.5) is straightforward and leads to

V1π(Mi)→V1π,Λ(Mi) =−
4π

M2
π±

(
~σ1 ·~q~σ2 ·~q

q2 +M2
i

+C(Mi)~σ1 ·~σ2

)
e−

q2+M2
i

Λ2 , (2.15)

where C(Mi) is determined by the requirement that the spin-spin part of the coordinate-space poten-
tial vanishes as r→ 0. For the TPEP, the scalar functions V2π(q) accompanying the spin-isospin op-
erators can be expressed as spectral integrals over the spectral function ρ(µ) = ℑ(V2π(q))|q=0+−iµ

V2π(q) =
2
π

∫
∞

2Mπ

µ dµ
ρ(µ)

q2 +µ2 , (2.16)

where, depending on the term at hand, an appropriate number of short-range subtractions have
to be performed to render the integration convergent, see Ref. [1] for the individual expressions
and corresponding subtraction coefficients discussed above. Regularization of our generic spectral
integral in eq. (2.16) yields

V2π,Λ(q) =
2
π

∫
∞

2Mπ

µ dµ
ρ(µ)

q2 +µ2 e−
q2+µ2

2Λ2 (2.17)

By expanding the exponentials of either eq. (2.15) or eq. (2.17), it can easily be seen that the
regularization does not affect the long-range part of the potential up to any order in the 1/Λ2

expansion but just corresponds to the addition of an infinite amount of contact interactions whose
coefficients are fixed by the form of the regulator.

We now turn to the regularization of the additional isospin-breaking terms discussed in this
work. Whenever possible, we apply the regularization prescription outlined above. There are,
however, terms which require additional consideration. First, we have to regularize quadratic prop-
agators, i.e. (q2 +M2

π)
−2, in e.g. eq. (2.6). These quadratic propagators are not present in the

isospin-invariant potential for the adopted "minimal nonlocality" choice β̄8 = 1/4, β̄9 = −1/4 in
the relativistic corrections, see e.g. Ref. [2] for details. Clearly, the 1/Λ2-term in the gaussian
form factor exp(−(q2 +M2

π)/Λ2) cannot cancel the quadratic propagator completely and creates
an additional long-range contribution. Therefore we adopt the convention

1
(q2 +M2

π)
2 →

(
1

(q2 +M2
π)

2 +
1

Λ2
1

q2 +M2
π

)
e−

q2+M2
π

Λ2 , (2.18)
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which removes the regulator-induced long-range contribution. The additional single-propagator
term in eq. (2.18) can, in principle, be induced by a suitably chosen unitary transformation whose
generator is proportional to 1/Λ2.

Another issue arises for the πγ potential (2.7) and a particular contribution to the CIB TPEP
at N3LO. Usually, contributions to the potential which feature a cut along the imaginary axis in
the complex q-plane (such as the TPEP) are expressed as spectral integrals which make the q-
dependence manifest as discussed above. However, these particular terms also feature poles at the
start of the cuts which prevents a direct representation in terms of spectral functions. On the other
hand, their indefinite integrals with respect to q2

F (q) =
∫ q2

0
dq′2V

(
q′
)

(2.19)

is in both cases free of poles. Hence we can find ρ̃(µ) = ℑ(F(q))|q=0+−iµ and differentiate the
spectral integral of F(q) to arrive at the once-differentiated spectral integral

V (q) =− 2
π

∫
∞

nMπ

µ dµ
ρ̃(µ)

(q2 +µ2)2 , (2.20)

with n= 1 (n= 2) for the πγ potential (CIB TPEP). Here we again encounter a quadratic propagator
inside the spectral integral whose regularization is completely analogous to eq. (2.18) and leads to

VΛ(q) =−
2
π

∫
∞

nMπ

µ dµρ̃(µ)

(
1

(q2 +µ2)2 +
1

nΛ2
1

q2 +µ2

)
e−

q2+µ2

nΛ2 . (2.21)

3. Results for parameter-free contributions

Let us start by looking at the size of the different contributions to the isospin-breaking TPEP.
Fig. 1 shows the regularized scalar functions VC,Λ(r), VS,Λ(r) and VT,Λ(r) accompanying the corre-
sponding spin operators in coordinate space for Λ = 450 MeV. See e.g. Appendix B of Ref. [1] for
explicit formulas for the Fourier transformation from eq. (2.8) to coordinate-space. Considering
the CIB TPEP, V II

C (r) only receives contributions at N3LO while contributions to V II
S (r) and V II

T (r)
start at N4LO. These spin-spin and tensor terms are proportional to δM2

π and the numerical large
LEC c4 and are clearly the largest contribution from the isospin-breaking TPEP reaching up to 300
keV for V II

T,Λ(r) at Λ = 450 MeV. This has to be compared to the isospin-invariant TPEP which
is of the order of ∼ 2− 12 MeV, see Fig. 6 and Fig. 7 of Ref [1] for the isospin-invariant TPEP
in coordinate-space. Looking now at the CSB TPEP, we see that the subleading contribution to
V III

C (r) at N4LO is notably larger than the leading one at N3LO. This is not surprising and indeed
the same pattern also arises for the leading and subleading isospin-invariant TPEP. It is caused by
the numerically large values of the subleading πN LECs c3 and c4 which are well-understood in
terms of resonance saturation [16]. We note that V III

S,Λ(r) and V III
T,Λ(r) as shown in Fig. 1 have been

obtained by evaluating the regularized form of eq. (2.9) with β = 0 and that their final contribution
can only be evaluated once β is known. Further, when comparing the sizes of the CIB and CSB
TPEP as shown in Fig. 1 one has to keep in mind that the CSB TPEP receives an additional factor
of ±2 when evaluated for a proton-proton or neutron-neutron pair, respectively, due to the isospin
operator τ3

1 + τ3
2 .
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Figure 1: Scalar functions of the regularized isospin-breaking TPEP in coordinate space for Λ = 450 MeV.
Dotted ochre and solid blue lines refer to the CIB TPEP (V II

X ) at N3LO and N4LO while dashed green and
long-dashed red lines refer to the CSB TPEP (V III

X ) at N3LO and N4LO.

Due to our convention of subtracting out the short-range components via the freedom in avail-
able contact interactions, all potentials in Fig. 1 vanish at the origin by construction. This is also
true for other terms in the potential with the exception of the πγ exchange potential. Here, no sub-
tractions can be performed based on our power-counting which leads to a non-vanishing spin-spin
potential at the origin in coordinate-space as shown in Fig. 2. One can see that the πγ exchange
potential is generally small. We also show the cutoff variation between Λ= 400−550 MeV. As can
be seen, the spin-spin part is fairly cutoff-independent for r > 1 fm while the tensor part reaches
cutoff-independence for about r > 2 fm.

How much do these new isospin-breaking terms affect the partial-wave analysis? As a first
step, we consider the impact of the parameter-free terms on the phaseshifts. Fig. 3 shows the
individual contributions of the CIB OPEP and the πγ potential as well as the CIB and CSB TPEP to
the difference δnp−δpp between isovector phases in the neutron-proton and proton-proton system.
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Figure 2: Scalar functions for the spin-spin and tensor part of the regularized πγ exchange potential in
coordinate-space. Dark blue bands represent the cutoff variation of the πγ exchange potential for Λ =

400−550 MeV.
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Figure 3: Individual contributions of isospin-breaking terms to np - pp phaseshift difference δnp−δpp with
respect to spherical bessel functions.

For the pp system, the Coulomb potential has been set to zero and phases have been calculated with
respect to spherical bessel functions. As can been seen, the CIB OPEP is the dominant contribution
in most partial waves. This is especially true for higher partial waves where the long-range nature
of the OPEP leads to a slower decrease with increasing partial waves compared to the shorter-range
TPEP. Strictly speaking, the CIB OPEP shown here includes the well known isospin-breaking effect
due to the different pion masses as well as the term in eq. (2.6), the latter of which is, however,
negligible on the scale of the figure. For S-, P- and D-waves the TPEP yields sizable contributions
to the phaseshift difference. It is interesting to see, that the CIB and CSB TPEP corrections to the
δnp− δpp are often comparable in size while one would naively expect the CIB ones to be larger
in the hierarchy among isospin-breaking classes. Finally, the impact of the πγ exchange potential
is small but non-negligible. It always reduces the phaseshift difference due to the CIB OPEP by a
small amount.

It has to be stressed that the results above represent only the parameter-free (in the NN system)
contributions and are thus incomplete. Our preliminary studies indicate that further corrections to
δnp−δpp due to the charge-dependence of the OPEP coupling constants could reach up to 50% of
the size of those due to the CIB OPEP at intermediate energies of Elab = 100−200 MeV. Likewise,
the isospin-breaking contact interactions seem to be large in 3P1 and 3P2. Work to extract these
contributions from the NN system is in progress.
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4. Conclusions

In these proceedings, we discussed the isospin-breaking potential from chiral EFT up to N4LO
in the employed unified power counting scheme. The new terms have been consistently regularized
for the inclusion in the semilocal momentum-space potentials of Ref. [1] and we have detailed the
extension of the SMS regulator to newly appearing structures in the isospin-breaking potential.
Finally, the size of the parameter-free isospin-breaking potential and its impact on the phaseshifts
was discussed. Clearly, the remaining unknown effects due to the charge-dependence of the OPEP
coupling constants and isospin-breaking contact interactions in P-waves have to be determined for
a complete and conclusive analysis of isospin-breaking in the two-nucleon system. Work along
these lines is in progress.
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