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Supersymmetric theories supplemented by an underlying flavor-symmetry G f provide a rich play-
ground for model building aimed at explaining the flavor structure of the Standard Model. In the
case where supersymmetry breaking is mediated by gravity, the soft-breaking Lagrangian typi-
cally exhibits large tree-level flavor violating effects, even if it stems from an ultraviolet flavor-
conserving origin. Building on previous work, we continue our phenomenological analysis of
these models with a particular emphasis on leptonic flavor observables. We consider two repre-
sentative models which aim to explain the flavor structure of the lepton sector, with symmetry
groups G f = ∆(27) and A4,
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1. Introduction

Since the discovery of the muon in cosmic rays at the beginning of the 20th century, the flavor
puzzle remains one of the biggest open questions in high-energy physics. This puzzle derives from
the bizarre flavor structures present in the Standard Model (SM) and the mystery, if any, behind
their origin. Although the SM is able to accommodate all known flavor parameters in its Yukawa
matrices, the values of these parameters are completely arbitrary and can only be fixed from exper-
imental measurements. Despite a wealth of ideas and models put forth by the theory community,
a convincing solution to this puzzle is still missing. Among the proposed ideas, the use of flavor
symmetries, both continuous and discrete, remains a popular tool for model builders. This avenue
has been especially explored in the lepton sector, where the suggestive form of the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix has led to several ansätze for its decomposition in terms
of primitive “bare" mixing matrices, which give leptonic mixing angles close to their measured
values. In most models, the aim is to motivate these special angles through the Clebsch-Gordan
(CG) coefficients of a symmetry group, and moreover, to predict the as yet unmeasured parameters
of the leptonic sector: the Dirac CP violating phase, the quadrant of the atmospheric angle, and the
neutrino mass ordering.

Unfortunately, a definitive picture has failed to emerge from the large number of present mod-
els (for recent reviews, see[1, 2]). One well-known problem at the level of the SM is that we cannot
fully reconstruct the fundamental flavor parameters of the SM Lagrangian, the Yukawa matrices.
In this regard, NP models which predict new flavor interactions in addition to new particles are
particularly interesting, as they are bound to shed additional light (right-handed mixings, etc.) on
the flavor puzzle regardless of their original motivations.

The MSSM contains a wealth of such new flavor interactions in its soft-breaking sector. Al-
though, in all generality the MSSM contains a host of unknown parameters in the flavor sector, in
a previous work [3] we explored a specific class of predictive models where the MSSM emerges as
an effective theory from an ultraviolet flavor-symmetric theory. These models :

• Arise from a superpotential which is invariant under a given flavor symmetry G f , sponta-
neously broken at a scale Λ f . After the breaking of G f , new effective operators, à la Froggatt-
Nielsen (FN), contribute to the low-energy superpotential. Similar effective operators con-
tribute to the soft-breaking Lagrangian.

• Mediation of Supersymmetry breaking to the visible sector is assumed to occur through
interactions at a scale ΛS�Λ f , so that the soft-breaking terms, and, more exactly, the visible
sector operators giving rise to the soft-breaking terms, respect G f . An illustrative example of
such a mediation scheme, which we will assume for simplicity, is gravity mediation.

Under these conditions, these models contain tree-level flavor violating effects, arising from
the mismatch between the order one coefficients of their supersymmetric and corresponding supersymmetry-
breaking supergraphs after integrating out the mediator fields at Λ f . In addition, as the flavor pa-
rameters 1 are fixed by the structure of the superpotential, these models are minimal, depending

1With the exception of the usual unknown order-one parameters.
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only on the traditional supergravity input parameters m0, m1/2, A0, tanβ , and µ . This minimality
and calculabity of these models makes them interesting in their own right, and especially amenable
to constraints from flavor observables; in many cases extending beyond the reach of direct searches
at the LHC.

Here, we investigate this class of models [3, 4, 5], with a particular emphasis on constraints
coming from leptonic flavor observables such as µ→ eγ , µ→ eee, and µ−e conversion. We look
at two representative models, based on the symmetry groups ∆(27) and A4.

2. A Review of the Mechanism

In this section we review and update the results of our previous work [3], demonstrating that
in SUSY models augmented with a flavor symmetry spontaneously broken at a scale Λ f ≤ ΛS,
flavor violation in the soft-breaking terms is generically present in the low-energy effective theory.
This remains true even starting with completely flavor blind soft-breaking in the full theory and runs
contrary to the naive expectation that the soft terms, being controlled by the flavor symmetry, should
be diagonalized by the same rotations which diagonalize the Yukawa couplings. This mismatch
between the Yukawa or Kinetic mixing matrices and their corresponding soft-term structures stems
from the different ways in which SUSY breaking may be inserted in the full theory diagrams,
giving rise to a single coupling in the low-energy effective theory.

Supersymmetry breaking can be represented by the insertion of a chiral background superfield,
a spurion X , which is assumed to obtain a vacuum value largely along its supersymmetry breaking
component 〈FX〉 � 〈X〉. Although not necessary, we will make the simplifying assumption in this
work that this spurion is the only source of SUSY breaking and couples universally to the visible
sector.

This mismatch between the soft-breaking terms and the superpotential or Kähler potential is
manifest in terms of the FN fields in the full theory. Corrections to the low-energy superpotential
W and Kähler potential K are generated below the flavor scale, Λ f . These corrections stem from
non-renormalizable operators containing an appropriate number of flavon insertions, generated by
integrating over the appropriate heavy messengers in the underlying theory, which, in the case of
the superpotential, may write schematically as,

W =Wren +Ψ Ψ H

(
∞

∑
n=1

xn

(
〈Φ〉
M

)n
)
, (2.1)

where Ψ (Ψ) denotes any of the left-handed (right-handed conjugate) MSSM superfields, H de-
notes the SM Higgs field, 〈Φ〉 the vacuum expectation values (VEVs) of any of the flavons or
heavy Higgses, M the heavy mass scale ∼ Λ f of the messengers and xn is a numerical coefficient
depending on the charges of the fields. These corrections may be represented schematically in
terms of the supergraphs which generate them, as shown in Fig. 1.

In addition to correcting to the superpotential, similar supergraphs will generate the so called
A-terms in the soft Lagrangian upon inserting a soft-breaking term at any internal point in the
diagram, which can be represented by the insertion of a spurion field X with non-vanishing F-term,
FX . Assuming a universal SUSY breaking, these universal corrections in the full theory are of the
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Figure 1: A supergraph depiction of the corrections to the superpotential represented by Eq. 2.1.
The internal lines are heavy messengers, and the cross denotes a supersymmetric mass insertion M.

form

Lsoft ∼
FX

MPl
×Wren ≡ m0×Wren (2.2)

In terms of our supergraph language, this corresponds to attaching an external line involving the
spurion X to each of the vertices in a given supergraph.

From here, it is evident that, after integrating out the heavy fields in the Lagrangian to obtain
the low-energy effective theory, the different ways to couple the spurion field produce a mismatch
between the A terms and their corresponding Yukawa matrices. For a given supergraph which
generates an entry in the Yukawa matrix, we have multiple ways to generate the corresponding A
term, one for each insertion of the spurion X at a given vertex. This mismatch may be easily written
in terms of the operator dimension which generates the given entry in the Yukawa matrices of the
superpotential. Given an operator with N Φ insertions, we have 2N + 1 possible X insertions;
2 for each Φ and mass-insertion vertex, plus one additional for the vertex involving the Higgs.
Generically, this implies that for a Yukawa entry Yi j generated by N Flavon insertions,

Ai j ∼ (2N +1) a0 Yi j (2.3)

where a0 = k m0. As in FN models each entry in the Yukawa matrix is generated at a different
order, the individual entries in the A matrices will contain different order one coefficients, and not
be directly proportional to the Yukawa matrices. Performing a rotation of the superfields and going
to the Super-CKM basis, the A terms will not be diagonalized, their off-diagonal terms contributing
at tree-level to flavor violating observables.

Similar considerations hold for the Kähler potential. Below Λ f , corrections to the Kähler
potential are generated when integrating over the heavy messengers. In the case of a single flavon,
as in the case Abelian models, it can be written schematically as,

(KΨ)i j = Ψi Ψ
†
j

(
δi j +∑

n,m
c(n,m)

i j

(
Φ

M

)n(
Φ†

M

)m
)
, (2.4)

where, for the leading terms, c(n,m)
i j = δm,0 δ (qi + q j− n) if (qi + q j) > 0 and c(n,m)

i j = δn,0 δ (qi +

q j−m) if (qi +q j)< 0.

3
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In the case of several flavon fields in complex representations of G f , as is the case of typical
non-Abelian models, the leading contributions appear in the form ΦrΦ

†
r

2,

(KΨ)i j = Ψi Ψ
†
j

(
δi j +∑

r,n
cr,n

i j

(
ΦrΦ

†
r

M2

)n

+ . . .

)
, (2.5)

Again, this can be depicted in terms of supergraphs, where now superfields may both enter
(undaggered) or leave (daggered) a given vertex. The leading corrections, those that do not contain
derivatives or additional suppressions of M, are all of the form shown in Fig. 2, with one internal
line a superpropagator of a given messenger connecting “bubbles" of Φ’s involving only mass
insertions in the internal lines. We may therefore organize the corrections generated by a given
supergraph by the number of incoming (Nin) and outgoing (Nout) Φ’s.

Figure 2: Supergraphs which correct the Kähler potential.

A given supergraph of this form will generate soft masses for the corresponding scalars Φ̃

when coupled to the supersymmetry breaking combination 〈FX〉〈FX〉†. For a supergraph of the
form of Fig. 2, we have have two ways to attach the spurion combination XX†, either to an internal
superpropagator, or with X attached to one of the incoming Φ vertices and X† attached to one of
the outgoing Φ vertices.

As there are Nin ways to attach X to a given incoming vertex and Nout ways to attach X† to an
outgoing vertex, plus an additional graph involving the correction to the internal superpropagator,
we find that the mismatch factor between the soft mass matrices and the Kähler matrices can be
written in terms of the total number of Flavon insertions N =Nin+Nout and the number of incoming
Flavon insertions Nin,

(m2
Ψ)i j ∼ f m2

0 · (KΨ)i j, f = Nin ·Nout +1 = Nin · (N−Nin)+1. (2.6)

As a concrete example, we show the case with Nin = 1, N = 3 in Fig. 3, for which Eq. 2.6 gives
f = 3.

2Depending on the model, there may exist other contributions, including even non-hermitian combinations of fields,
if they are neutral under the different charges. However, they are usually sub-leading with respect to ΦrΦ

†
r .
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Figure 3: An example of the mismatch factor in the soft masses for Nin = 1, N = 3.

Eqs. 2.3 and 2.6 are useful in the sense that without knowing precisely the underlying theory,
the mismatch factors can be quickly calculated solely in terms of the number of Flavon insertions,
or alternatively, the operator dimension at which a given Yukawa entry is generated. Once these
mismatch factors are known and the soft-matrices given, rotations of the superfields, first to canon-
ically normalize [6] and then to diagonalize the Yukawa matrices, may be performed.

It is worth noting that even if the leading non-universal contributions in the soft-mass matrix
are proportional to the Kähler matrix, flavor changing entries are generically present in the SCKM
basis. In this case, the diagonalization of the Kähler matrix also diagonalizes the soft-mass matrix,
but the rescaling of the diagonal Kähler elements does not eliminate the diagonal elements in the
soft-mass matrices if f 6= 1; off-diagonal elements will always reappear when going to the SCKM
basis.

As an illustrative example, consider a simplified non-Abelian model with two flavons. The
non-universal corrections to the Kähler potential and soft-mass matrices would be proportional,

Ki j = δi j+c1

(
Φ1Φ

†
1

M2

)
+c2

(
Φ2Φ

†
2

M2

)
, (mi j)

2 =m2
0

(
δi j +3c1

(
Φ1Φ

†
1

M2

)
+3c2

(
Φ2Φ

†
2

M2

))
.

(2.7)
Taking Φ1 = (0,1) and Φ2 = (ε,ε), it is clear that both matrices are diagonalized with the same
rotation U , but the rescaling of the Kähler, N1/2, does not reabsorb the non-universal diagonal
elements in the soft mass matrix,

N1/2U†Ki jUN1/2 = 1l N1/2U†(mi j)
2UN1/2 ' m2

0

(
1+2 a2 ε 0

0 1+b1 +b2ε

)
, (2.8)

with b1 ' 2c1/(1+ c1) and b2 ' 2c2/(1+ c2
1). Thus, as stated before, when diagonalizing the
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Yukawa matrix to go to the SCKM basis, the new rotation V ∼ O(ε), will introduce again off-
diagonal terms in the soft-mass matrices.

These off-diagonal entries of the A terms and soft masses are very relevant in performing phe-
nomenological analyses of given models. By subjecting them to the appropriate flavor constraints,
complementary bounds to high-energy colliders can be set. The main constraints in this context
are: BR(µ → eγ)≤ 4.2×10−13 (4×10−14) and BR(µ → eee)≤ 1.0×10−12 (10−16), where the
numbers in parenthesis refer to the expected future bounds.

As an application of these rules, we turn now to a phenomenological analyses using lepton
flavor observables for three representative lepton flavor models found in the literature, based on the
flavor groups G f = ∆(27) and A4.

3. A ∆(27) Model

As a first example, we consider the flavor model of I. de Medeiros Varzielas. G. G. Ross and S.
F. King in Ref. [7], where the continuum SU(3) f family symmetry of Ref. [8], already considered
in our previous work to study the quark sector, was replaced by its discrete subgroup ∆(27). In
this way the mechanism for obtaining the desired vacuum structure, which leads to Tri-Bi-maximal
(TB) mixing in the lepton sector through a type I see-saw mechanism, is considerably simplified.

∆(27) is the simplest non-trivial group in the series ∆(3N2), a discrete subgroup of SU(3) that
can be defined in terms of the semi-direct product (ZN ×Z′N)nZ3. The elements of the group (g)
can be written in terms of the generators of Z3 (a, a′, b) as follows:

g = bk am a′n for k, m, n = 0, 1, 2 , (3.1)

where the generators must satisfy

a3 = a′3 = b3 = e , aa′ = a′ a

bab−1 = a−1a′−1 , ba′ b−1 = a . (3.2)

These conditions give rise to nine singlets and a triplet/anti-triplet representation. Table 1 shows the
particle content of the model: left-handed (LH) leptons transform as triplets 3 whereas the right-
handed (RH) fields transform as anti-triplets 3̄; the Higgs doublets are singlets under the group
transformations and flavons, generically denoted as φ , transform as triplet or anti-triplets.

Field `,ν `c,νc Hu,d Σ φ123 φ1 φ̄3 φ̄23 φ̄123

∆(27) 3 3 1 1 3 3 3̄ 3̄ 3̄
Z2 1 1 1 1 1 -1 -1 -1 -1

U(1)FN 0 0 0 2 -1 -4 0 -1 1
U(1)R 1 1 0 0 0 0 0 0 0

Table 1: Transformation of the matter superfields under the ∆(27) family symmetries.

Unlike the SU(3) f model, where the VEV of a triplet could be rotated to a single direction, the
discrete non-Abelian symmetry leads to a finite number of candidate vacuum states. The obtained
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pattern for the VEVs is then given by [7]:

〈φ̄3〉T = υ3

 0
0
1

 , 〈φ̄23〉T = υ23

 0
−1
1

 , (3.3)

〈φ123〉 ∝ 〈φ̄123〉T = υ123

 1
1
1

 , 〈φ1〉 ∝ υ1

 1
0
0

 , (3.4)

with v123� v23� v3 ∼ v1.
The leading Yukawa terms responsible for the fermion masses in the SU(3) f model are still

the dominant operators in this example although, beyond the LO, additional contributions enter in
the superpotential. Its complete expression is [7]:

W` =
1

M2 (` φ̄3)(`
c
φ̄3)Hd +

1
M2 (` φ̄23)(`

c
φ̄123)Hd +

1
M2 (` φ̄123)(`

c
φ̄23)Hd (3.5)

+
1

M3 (` φ̄23)(`
c
φ̄23)ΣHd

+
1

M5 (` φ̄123)(`
c
φ̄3)Hd Σ(φ1 φ̄123) +

1
M5 (` φ̄3)(`

c
φ̄123)ΣHd (φ1 φ̄123)

+
1

M6 (` φ̄123)(`
c
φ̄123)Hd (φ123 φ̄3)

2 .

After the flavor symmetry is broken, the Yukawa and Trilinear structures are given by:

Y` ∼ yτ

 x1 ε8 −x2 ε3 x2 ε3

−x3 ε3 3x4 ε2 −3x4ε2

x3 ε3 −3x4 ε2 x5 α

 , A` ∼ yτ a0

 13x1 ε8 −5x2 ε3 5x2 ε3

−5x3 ε3 21x4 ε2 −21x4 ε2

5x3 ε3 −21x4 ε2 5x5 α

 ,

(3.6)
where xi ∼ O(1), 〈Σ〉/M` ' −3, υ3/M` = α ' 0.7, υ123/M` ' ε2 and the expansion parameter is
given by ε = υ23/M` ' 0.15. As stated before, Y` and A` are not simply proportional due to the
mismatch caused by the different ways in which the spurion field can be attached to the Yukawa
supergraphs in order to generate the Trilinear terms. Thus, from Eq. (2.3), the multiplicative factors
in Eq. (3.6) are simply 2N+1, with N equal to the number of flavon insertions. For instance, in the
case of Y11 ∝ ε8, N = 6 (see last line of the superpotential) and the proportionality factor would be
13. Similarly, for Y22 ∝ 3ε2, N = 3 (second line of the superpotential) and Ai j = 7a0Yi j ∝ 21ε2.

Regarding the Kähler potential, it is important to stress here that in this model the SU(2)L

doublet-messengers are assumed to be much heavier than their singlet counterpart. Because of
that, corrections to the kinetic and soft terms for LH particles will be negligible and, therefore, the
associated matrices can be taken as the identity matrix. In contrast, the LO Kähler potential for RH
fields is:

K`,R = `c`c† +
1

M2

[
(`c

φ̄3)(φ̄
†
3 `

c†) + (`c
φ̄23)(φ̄

†
23`

c†) + (`c
φ̄123)(φ̄

†
123`

c†)
]

(3.7)

+
1

M3

[
(`c

φ̄23)(φ̄
†
123`

c†)Σ + h.c.
]
+

1
M5

[
(`c

φ̄123)(φ̄
†
23`

c†)(φ̄3φ1)Σ + h.c.
]
.
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Similarly, a mismatch between the soft-mass matrices and the Kähler metric will arise when
considering the different ways in which XX† can be coupled to the diagram, see Fig. 3. Once the
flavons get their VEV, the Kähler function and soft-mass matrices can be written as:

(KR)i j = (δi j + CR, i j ) , (m2
R)i j = m2

0 (δi j + BR, i j) , (3.8)

with CR and BR given by:

CR ∼

 ε4 −3(1+α)ε3 3(1+α)ε3

−3(1+α)ε3 ε2 −ε2

3(1+α)ε3 −ε2 α2

 , (3.9)

BR ∼

 2ε4 −3(3+5α)ε3 3(3+5α)ε3

−3(3+5α)ε3 2ε2 −2ε2

3(3+5α)ε3 −2ε2 2α2

 . (3.10)

𝑀
1/

2
(G

eV
)

𝑚0 (GeV)

ℓ̃(10TeV)

ℓ̃(12TeV)

𝑔(8TeV)

Future bounds:
𝜇 → 3 𝑒 , tan 𝛽 = 40
𝜇 → 3 𝑒 , tan 𝛽 = 20
Current bounds:
𝜇 → 𝑒 𝛾 , tan 𝛽 = 40
𝜇 → 𝑒 𝛾 , tan 𝛽 = 20
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𝜏 LSP

NO EWSB

ATLAS BOUND

Figure 4: Excluded regions due to µ → eγ and µ → eee for two reference values:
tanβ = 5 (blue shapes) and tanβ = 20 (red shapes). In the dark (blue and red) regions,
we compare with current µ → eγ bounds, while in the light (blue and red) regions we
compare with the expected µ → eee sensitivity in the near future. Interestingly, even for
present bounds, these results are competitive with mSUGRA ATLAS limits (gray area).

Again, the multiplicative factors in Eq. (3.11) can be easily computed from Eq. (2.6) just
counting the number of flavon fields entering and leaving the diagram, without specifying the
complete messenger spectrum of the UV theory.

With the structures of the Kinetic-mixing and Yukawa matrices known, the superfields must
now be rotated twice: first, to the basis where canonical kinetic terms are recovered (canonical
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basis), and again, to the basis where the Yukawa couplings are diagonal (mass basis). Thus, the
final matrices are:

A` −→ yτ a0


x2x3
x4

ε4 2x2 ε3 −2 x2
x5

α̂ ε3

2x2 ε3 24x4 ε2 −6x4 α̂ ε2

−2x2 ε3 −6x4 ε2 5x5 α̂

 , (3.11)

m2
`,R −→ m2

0


1 −3(2+4α)ε3 3(2+5α− x5) α̂ ε3

−3(2+4α)ε3 1+ ε2 −
(

1+3 x4
x5

α

)
α̂ ε2

3(2+5α− x5) α̂ ε3 −
(

1+3 x4
x5

α

)
α̂ ε2 1+ α̂2 α2

 ,

(3.12)

where α̂ ≡ 1/
√

1+α2. The net effect of this series of rotations is the following: the canonical
normalization makes the multiplicative factors of BR decrease by one unit, while having no impact
on the Yukawa and Trilinear terms; the second rotation to the mass basis results in the reduction
from ε8→ ε4 of A`,11 and gives only additional small corrections to the elements of BR. The matrix
U` that performs the latter diagonalization gives only O(ε2) corrections to UPMNS =U†

` Uν so that
it maintains the tri-bimaximal LO structure. As a consequence, this model cannot reproduce the
experimental value of the reactor angle that would require sinθ13 ∝ ε 3.

With these matrices, a combined fit to the latest experimental values for UPMNS [10], excluding
the 13 entry, and the Yukawas at the GUT scale [11] is performed to fix the values of the xi coeffi-
cients. For ε = 0.13 these are reasonably O(1) coefficients, namely: (x1 = 1.0, x2 = 1.2, x3 = 1.,
x4 = 1., x5 = 1.7). After substituting these values, the matrices must be run to the EW scale by
means of the MSSM renormalization group equations (RGE), checked to satisfy the charge and
color breaking relations, and compared to the most relevant flavor observables. Numerical calcula-
tions for the running, spectrum and low energy processes have been done with the Supersymmetric
Phenomenology package (SPheno) [12, 13]. The resulting plot is Fig. 4.

As shown in Fig. 4, the most restrictive constraints come from the flavor violating decays
µ → eγ and µ → eee. In the plot, the colored shapes represent the parameter regions where the
analyzed model would disagree with current and future bounds in Table ??. As the results strongly
depend on tanβ , two reference values of tanβ has been considered that is tanβ = 5, blue (darker)
regions, and tanβ = 20, red (lighter) regions. It can be observed that, for both values of tanβ ,
the obtained bounds are competitive with mSUGRA ATLAS limits, even just considering present
µ→ eγ experimental limits. On top of that, if the Mu3e experiment reaches the expected precision
finding no sign of the µ → eee process, the parameter space of the model will turn out to be
significantly constrained.

These results are in good agreement with those obtained with the mass insertion approximation
(MIA) [14, 15, 16, 17, 18], which provides a simplified description of the phenomenology. As

3After completion of this work, we came across the preprint [9], where the authors succeed in obtaining a correct
sinθ13 in the context of a similar ∆(27) model.
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Field νc ` ec µc τc Hd Hu φS φT ξ ξ ′ ξ ′†

A4 3 3 1 1 1 1 1 3 3 1 1′ 1′′

Z4 -1 i 1 i -1 1 i 1 i 1 i -i
U(1)R 1 1 1 1 1 0 0 0 0 0 0 0

Table 2: Transformation of the matter and flavon superfields under the flavor symmetry G f =

A4×Z4, for non trivial cases the correspondent daggered fields are also specified.

discussed in [18, 19, 20], in the absence of off-diagonal δLL insertions, the main effects come from
the RR sector. This sector suffers from a characteristic cancellation among the two tanβ -enhanced
dominant contributions: the one due to the pure bino term (with internal chirality flip and a flavor-
conserving δLR mass insertion) and another from the bino-higgsino exchange. This destructive
interference can be easily recognized in Fig. 4. Moreover, these contributions require a bino mass
insertion, M1, so, as we see in the figure, the bound practically disappears for small values of M1/2.

4. An A4 Model

As a second example, we consider a model belonging to perhaps the most popular class of
models based on discrete flavors groups, those with G f = A4. This is the discrete group of even
permutations of 4 objects; it contains 12 elements and has four inequivalent irreducible representa-
tions: three singlets {1, 1′, 1′′} and a triplet 3. It is specially interesting because it is the minimal
non-Abelian group containing a triplet representation.

Flavor models based on an A4 symmetry have been an attractive option for describing the
lepton sector due to their simplicity and economical structure in reproducing the well-known TB-
mixing pattern at leading order (LO), and may still accommodate an adequate θ13, once higher
order corrections to masses and mixings are taken into account.

Here, we analyze the A4 Altarelli-Meloni model of Ref. [21], which can be seen as a simplest
A4 model in the sense that it is able to generate an appropriate charged-lepton hierarchy between
generations without requiring an extra U(1)FN symmetry. The complete flavor symmetry of the
model is G f = A4× Z4 with an additional U(1)R symmetry related to R-parity. Table 2 shows
the symmetry assignments for leptons, electroweak Higgs doublets and flavons. In particular, the
three generations of left-handed lepton doublets ` and the right-handed neutrino νc are ascribed
to triplet representations while the right-handed charged leptons ec, µc, τc, together with the two
Higgs doublets Hu,d , transform in the trivial singlet representation. Beyond the MSSM fields, the
model contains the flavons that transform as singlets or triplets.

The vacuum alignment in this model responsible for the symmetry breaking [21] is given by

〈φT 〉 ∝ υT

 δ υ̂T 1

1+δ υ̂T 2

δ υ̂T 3

 , 〈φS〉 ∝ υS

 1+δ v̂S

1+δ v̂S

1+δ v̂S

 ,

(4.1)

〈ξ 〉 ∝ υξ , 〈ξ ′〉 ∝ υ
′
ξ
(1+δ υ̂

′
ξ
) ,

10



P
o
S
(
C
O
R
F
U
2
0
1
7
)
0
4
5

Flavour LHC Oscar Vives

where δ υ̂i = δυi/M, υT/M ∼ υ ′
ξ
/M ∼ ε and υS/M ∼ υξ/M ∼ δυi/M ∼ ε ′. The shift in

the VEVs, denoted as δυi, account for NLO corrections arising from higher-order operators in the
driving superpotential. A similar order of magnitude is expected for ε and ε ′, although a moderate
hierarchy can be tolerated among them.

The LO effective superpotential contains the following operators

W` =
1
M

τ
c(`φT )Hd +

1
M2 µ

c [(`φ 2
T ) + (`φT )

′′
ξ
′ ] Hd (4.2)

+
1

M3 ec [(`φ 3
T ) + (`φ 2

T )
′′
ξ
′ + (`φT )

′
ξ
′2 ]Hd ,

where the brackets stand for each possible product combination of the fields inside. It is easy to see
that, replacing Eqs. (4.1) into Eq. (4.2) with δυi = 0, the vacuum configuration leads to diagonal
and hierarchical Yukawas in the charged-lepton sector. Off-diagonal entries in the Yukawa matrix
derive from considering the shifted VEVs (δυi 6= 0) in the LO superpotential and higher-order
operators obtained by the insertion of φS and ξ ′ [21]. Taking into account the charges of Table 2,
the correction to the LO superpotential would be:

δW ` =
1

M2 τ
c [(`φT φS) + (`φS)

′′
ξ
′ ] Hd

+
1

M3 µ
c [(`φ 2

T φS) + (`φT φS)
′′
ξ
′ + (`φS)

′
ξ
′2 ] Hd (4.3)

+
1

M4 ec [(`φ 3
T φS) + (`φ 2

T φS)
′′
ξ
′ + (`φT φS)

′
ξ
′2 + (`φS)ξ

′3 ] Hd .

As can be seen in Eq. (4.4), these contributions result in non-vanishing off-diagonal entries of the
same order of the diagonal term in each row multiplied by ε ′:

Y` ∼

 x1 ε3 x2 ε3ε ′ x3 ε3ε ′

x4 ε2ε ′ x5 ε2 x6 ε2ε ′

x7 ε ε ′ x8 ε ε ′ x9 ε

 , A` ∼ a0

 7x1 ε3 9x2 ε3ε ′ 9x3 ε3ε ′

7x4 ε2ε ′ 5x5 ε2 7x6 ε2ε ′

5x7 ε ε ′ 5x8 ε ε ′ 3x9 ε

 (4.4)

with xi ∼ O(1) generic order one coefficients. Again, Y` and A` are not proportional and the
multiplicative factors in the Trilinears can be computed with Eq. (2.3) considering N equal to the
power associated to ε and/or ε ′ in the correspondent Yukawa element.

The LO Kähler potential for left-handed (LH) fields is given by:

K`,L = ``† +
1

M2

[
(``†

φS φ
†
S ) + (``†

φS)ξ
†
]
+ h.c. , (4.5)

whereas the right-handed (RH) Kähler potential would be:

K`,R = ecec† + µ
c
µ

c† + τ
c
τ

c† +

+
1

M2

[
ec(φT φ

†
S )µ

c† + µ
c(φT φ

†
S )τ

c†
]

(4.6)

+
1

M3 ec
[
(φSφ

†2
T ) + (φSφ

†
T )
′
ξ
′† + h.c.

]
τ

c† + h.c. ,

Once the flavons have been integrated out, the Kähler function and soft-mass matrices for both
LH- and RH-fields can be written as in Eq. (3.9) with CL(R) and BL(R):
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CL ∼

 ε2 + ε ′2 ε ′2 ε ′2

ε ′2 ε2 + ε ′2 ε ′2

ε ′2 ε ′2 ε2 + ε ′2

 , CR ∼

 ε2 + ε ′2 ε ε ′ ε2ε ′

ε ε ′ ε2 + ε ′2 ε ε ′

ε2ε ′ ε ε ′ ε2 + ε ′2

 ,

(4.7)

BL ∼ 2

 ε2 + ε ′2 ε ′2 ε ′2

ε ′2 ε2 + ε ′2 ε ′2

ε ′2 ε ′2 ε2 + ε ′2

 , BR ∼ 2

 ε2 + ε ′2 ε ε ′ 3
2 ε2ε ′

ε ε ′ ε2 + ε ′2 ε ε ′

3
2 ε2ε ′ ε ε ′ ε2 + ε ′2

 .

(4.8)

Again, the multiplicative factors in Eq. (4.8) can be easily figured out from Eq. (2.6) by just
computing the number of flavon fields entering and leaving the diagram. Then, we perform the two
rotations to the canonical and the mass basis that result in the following rotated matrices

A` −→ a0


7x1 ε3

(
4x2 +2 x1x4

x5

)
ε3ε ′

(
6x3 +4 x1x7

x9

)
ε3ε ′

2x4 ε2ε ′ 5x5 ε2
(

4x6 +2 x5x8
x9

)
ε2ε ′

2x7 ε ε ′ 2x8 ε ε ′ 3x9 ε

 , (4.9)

m2
`,L −→ m2

0

 1+ ε2 + ε ′2 ε ′2 ε ′2

ε ′2 1+ ε2 + ε ′2 ε ′2

ε ′2 ε ′2 1+ ε2 + ε ′2

 , (4.10)

m2
`,R −→ m2

0


1+ ε2 + ε ′2 ε ε ′ 2ε2ε ′+

(
x4
x5
− x8

x9

)
ε ε ′2

ε ε ′ 1+ ε2 + ε ′2 ε ε ′

2ε2ε ′+
(

x4
x5
− x8

x9

)
ε ε ′2 ε ε ′ 1+ ε2 + ε ′2

 .

(4.11)

We find that the dominant structures of the matrices remain unaltered, the coefficients receiv-
ing only small corrections. In this case, the Yukawa rotation matrix U` gives rise to an O(ε ′)

correction to the 13 entry of the PMNS matrix, such that the model can reproduce the experimental
magnitude of sinθ13. This imposes ε ′ ∼ 0.1 while the value of ε is fixed by the Yukawa hierarchy.
Note that the off diagonal entries in the soft mass matrices arise at order ε ′2.

The O(1) coefficients xi are determined by the combined fit of the experimental values of
UPMNS [10] and the Yukawas at the GUT scale [11]. For tanβ = 5 and (ε,ε ′) = (0.04 , 0.08) we
obtain: (x1 = 0.7, x2 = 1.0, x3 =−1.0, x4 = 1.6, x5 = 5.3, x6 = 0.99, x7 = 4.0, x8 = 5.4, x9 = 3.6);
whereas for tanβ = 20 and (ε,ε ′) = (0.02 , 0.06), (x1 = 1.3, x2 = 1.0, x3 = 0.99, x4 = 1.8, x5 = 5.3,
x6 = 0.99, x7 = 4.4, x8 = 0.81, x9 = 1.8).

After RGE evolving the matrices to the SUSY scale with SPheno, checking the charge and
color breaking relations, and calculating the low-energy observables, the constraints on the model

12
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Figure 5: Excluded regions due to µ → eγ and µ → eee for two reference values:
tanβ = 5 (blue shapes) and tanβ = 20 (red shapes). In the dark (blue and red) regions,
we compare with current µ → eγ bounds, while in the light (blue and red) regions we
compare with the expected µ→ eee sensitivity in the near future. As before, these results
are competitive with mSUGRA ATLAS limits (gray area).

are shown in Fig. 5 for tanβ = 5, blue (dark) region, and tanβ = 20, red (light) region. As expected,
the most restrictive constraints come from the flavor violating decays µ→ eγ and µ→ eee. Current
limits of the first process are competitive with present ATLAS bounds whereas future limits for
µ→ eee will allow us to either discover SUSY or to constraint a considerable part of the parameter
space if no signal is measured.

In contrast with the previous example, no cancellation is observed here. This is because, in
this model, the dominant effect comes from the LL mass insertion and, therefore, the two tanβ -
enhanced terms have the same sign. A detailed discussion of these effects can be found in [18]. We
see that present and future LFV constraints are able to explore large values of m0 and M1/2 in these
models, well beyond the LHC reach.

5. Conclusions

In this work, building on the methods of [3], we continue to analyze the flavor structures
in supersymmetric theories where the MSSM arises as a low energy effective theory from a flavor
symmetry broken at higher scales. For a specific class of predictive models, if the scale of mediation
of Supersymmetry breaking is above the flavor symmetry scale, the resulting flavor structures in the
soft-breaking terms are not universal and can give rise to flavor changing effects at low energies.

We have applied these ideas to two representative discrete flavor symmetry models, A4 and
∆(27), able to explain the neutrino and charged lepton structures. In these models, we have been
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able to obtain the full trilinear couplings and the soft mass matrices and we have applied the con-
straints from the non-observation of lepton flavor violating processes, like µ → eγ and µ → eee.
We saw that different models may be distinguished through the different predicted structures in the
trilinear terms or soft mass matrices. We have shown that, at present, these constraints are already
competitive with direct LHC searches. Future bounds on these observables may discover SUSY
with masses far beyond the reach of the LHC high-luminosity upgrade.

In conclusion, flavor symmetries in a supersymmetric context give rise generically to non-
universal soft-breaking terms. This non-universality and the resulting flavor-changing effects must
be always taken into account when restricting the allowed parameter space in these models. More-
over, the power of flavor changing observables to signal the presence of supersymmetry at higher
scales has been explicitly demonstrated in these calculable models. We hope to continue to extend
these results to unified models with symmetries that describe both the quark and lepton sectors in
a future work.
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