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We verify the existence of Generalized Sudden Future Singularities (GSFS) in quintessence mod-
els with scalar field potential of the form V (φ) ∼ |φ |n where 0 < n < 1 and in the presence of
a perfect fluid, both numerically and analytically, using a proper generalized expansion ansatz
for the scale factor and the scalar field close to the singularity. This generalized ansatz includes
linear and quadratic terms, which dominate close to the singularity and cannot be ignored when
estimating the Hubble parameter and the scalar field energy density; as a result, they are important
for analysing the observational signatures of such singularities. We derive analytical expressions
for the power (strength) of the singularity in terms of the power n of the scalar field potential.
We then extend the analysis to the case of scalar tensor quintessence models with the same scalar
field potential in the presence of a perfect fluid, and show that a Sudden Future Singularity (SFS)
occurs in this case. We derive both analytically and numerically the strength of the singularity in
terms of the power n of the scalar field potential.
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1. Introduction

Latest evidence of an accelerating Universe [1, 2, 3, 4, 5, 6], has opened new windows in the
context of the study of physics in cosmological scales, and has lead to the consideration of models
alternative to ΛCDM . Such models include modifications of GR (modified Gravity) [7, 8], scalar
field dark energy (quintessence) [9, 10], physically motivated forms of fluids e.g. Chaplygin gas
[11, 12, 38] etc.

Some of these dark energy models predict the existence of exotic cosmological singularities,
involving divergences of the scalar spacetime curvature and/or its derivatives. These singularities
can be either geodesically complete [13, 14, 15, 16, 34, 35, 36, 37, 39] (geodesics continue beyond
the singularity and the Universe may remain in existence) or geodesically incomplete [17, 18, 33]
(geodesics do not continue beyond the singularity and the Universe ends at the classical level).
They appear in various physical theories such as superstrings [19], scalar field quintessence with
negative potentials [20], modified gravities and others [21, 22].

The divergence of the scale factor and/or its derivatives leads to divergence of scalar quantities
like the Ricci scalar, thus to different types of singularities or ‘cosmological milestones’ [23, 25,
26]. However geodesics do not necessarily end at these singularities and if the scale factor remains
finite, they are extended beyond these events [22] even though a diverging impulse may lead to
dissociation of all bound systems in the Universe at the time ts of these events[24].

Thus, singularities can be classified [27] according to the behaviour of the scale factor a(t),
and/or its derivatives at the time ts of the event or equivalently, and the energy density and pressure
of the content of the universe at the time ts. A classification of such singularities and their properties
is shown in Table 1.

Table 1: Classification and properties of cosmological singularities.

Name tsing a(ts) ρ(ts) p(ts) ṗ(ts) w(ts) T K Geodesically

Big-Bang (BB) 0 0 ∞ ∞ ∞ finite strong strong incomplete
Big-Rip (BR) ts ∞ ∞ ∞ ∞ finite strong strong incomplete

Big-Crunch (BC) ts 0 ∞ ∞ ∞ finite strong strong incomplete
Little-Rip (LR) ∞ ∞ ∞ ∞ ∞ finite strong strong incomplete

Pseudo-Rip (PR) ∞ ∞ finite finite finite finite weak weak incomplete
Sudden Future (SFS) ts as ρs ∞ ∞ finite weak weak complete

Big-Brake (BBS) ts as 0 ∞ ∞ finite weak weak complete
Finite Sudden Future (FSF) ts as ∞ ∞ ∞ finite weak strong complete

Generalized Sudden Future (GSFS) ts as ρs ps ∞ finite weak strong complete
Big-Separation (BS) ts as 0 0 ∞ ∞ weak weak complete

w-singularity (w) ts as 0 0 0 ∞ weak weak complete

A particularly interesting type of singularities are the Sudden Future Singularities [21], which
involve violation of the dominant energy condition ρ ≥ |p|, and divergence of the cosmic pressure
of the Ricci Scalar and of the second time derivative of the cosmic scale factor Table 1. The scale
factor can be parametrized as

a(t) =
(

t
ts

)m

(as−1)+1−
(

1− t
ts

)q

, (1.1)
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where as is the scale factor at the time ts and 1 < q < 2. For this range of the parameter q, the
scale factor and its first derivative, i.e. a, ȧ respectively, and ρ remain finite at ts. However, the
quantities p, ρ̇ and ä become infinite. Thus, when the first derivative of the scale factor is finite at
the singularity, but the second derivative diverges (SFS singularity [21, 28]), the energy density is
finite but the pressure diverges.

In the following, we focus on the quintessence models with a perfect fluid, and investigate
the strength of the GSFS both analytically and numerically. We extend the analysis to the case of
scalar-tensor quintessence and investigate the modification of the strength of the singularity both
analytically (using a proper expansion ansatz) and numerically, by explicitly solving the dynamical
cosmological equations.

2. The setup

In FRW spacetime with metric

ds2 =−dt2 +a2(t)
[

dr2

1− kr2 + r2(dθ
2 + sin2

θdφ
2)

]
(2.1)

the most general action involving gravity, nonminimally coupled with a scalar field φ , and a perfect
fluid is

S =
∫ [1

2
F(φ)R+

1
2

gµν
φ;µφ;ν −V (φ)+L( f luid)

]√
−gd4x. (2.2)

where F(φ) is the nonminimal coupling of gravity to the scalar field and L( f luid) the fluid term.
We have set 8πG = c = 1 and assume spatial flatness (k = 0). In the case of the scalar-tensor
models, corresponding to the action (2.2), we assume a non-minimal coupling linear in the scalar
field F(φ) = 1−λφ , even though the results on the type of the singularity in this class of models
are unaffected by the particular choice of the non-minimal coupling.
In the special case where the non-minimal coupling F(φ) = 1, the action (2.2) reduces to the simple
case of quintessece models with a perfect fluid

S =
∫ [1

2
R+

1
2

gµν
φ;µφ;ν −V (φ)+L( f luid)

]√
−gd4x. (2.3)

The potential V (φ) is of the form

V (φ) = A|φ |n, A > 0, (2.4)

with 0 < n < 1 and A a constant parameter. The dynamical evolution of the scalar field due to the
potential is shown in Fig. 1

It was shown, through a qualitative analysis [30], that the power law scalar potential (2.4)
leads to singularities at any scale factor derivative order larger than three, depending on the value
of the power n. In particular, for k < n < k+ 1, with k > 0, the (k+ 2)th derivative of the scale
factor diverges at the singularity. This is in fact the simplest extension of ΛCDM with geodesically
complete cosmic singularities and occurs at the time ts, when the scalar field becomes zero (φ = 0).
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Figure 1: Dynamical evolution of the scalar field potential V (φ) = A|φ |n

3. The Quintessence case

The action in this class of models, is of the form (2.3). The energy density and pressure of the
scalar field φ , may be written as

ρφ =
1
2

φ̇
2 +V (φ) and pφ =

1
2

φ̇
2−V (φ). (3.1)

and we assume that the perfect fluid is pressureless (pm = 0).
Variation of the action (2.3) leads to the dynamical equations

3H2 =
3Ω0,m

a3 +
1
2

φ̇
2 +V (φ) (3.2)

φ̈ =−3Hφ̇ −An|φ |n−1
Θ(φ) (3.3)

2Ḣ =−3Ω0,m

a3 − φ̇
2 (3.4)

where a is the scale factor, H = ȧ
a is the Hubble parameter, ρm =

ρ0,m
a3 =

3Ω0,m
a3 , Ω0,m = 0.3 and

Θ(φ) =

{
1, φ > 0

−1, φ < 0
(3.5)

.
From eqs (3.2), (3.4), it follows that when t → ts i.e. φ → 0, the Hubble parameter H and its

first derivative Ḣ remain finite and so does φ̇ . But in eq. (3.3) there is a divergence of the term

3
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φ n−1 for 0 < n < 1 and thus φ̈ → ∞ as φ → 0. Ḧ also diverges at this point due to the divergence
of φ̈ , as follows by differentiating eq. (3.4). This implies that the third derivative of the scale
factor diverges, and a GSFS occurs at this point (i.e. as,ρs, ps remain finite but ṗ→ ∞). Thus, the
constraints on the power exponents q,r of the diverging terms in the expansion of the scale factor
(∼ (ts− t)q ) and of the scalar field (∼ (ts− t)r ) are 2 < q < 3 and 1 < r < 2 respectively (see eqs
(3.8), (3.9) below). It has been shown in [31] that by choosing q to lie in the intervals (N,N + 1)
for N ≥ 2, where N ∈ Z+, a finite-time singularity occurs in which

dN+1a
dtN+1 → ∞ (3.6)

but

dsa
dts → 0, f or s≤ N ∈ Z+ (3.7)

This allows for pressure singularities which are accompanied by divergence of higher time deriva-
tives of the scale factor (divergence of the fourth-order derivative of the scale factor [31] when
p→ ∞), in Friedmann solutions of higher-order gravity ( f (R)) theories [32].

The above qualitative analysis can be extended to a quantitative level by introducing a new
ansatz for the scale factor and the scalar field, containing linear and quadratic terms of (ts− t).
These terms play an important role, since they dominate in the first and second derivative of the
scale factor as the singularity is approached.

The new ansatz for the scale factor which generalizes (1.1), by introducing linear and quadratic
terms in (ts− t), is of the form [29]

a(t) = 1+(as−1)
(

t
ts

)m

+b(ts− t)+ c(ts− t)2 +d(ts− t)q, (3.8)

where m = 2
3(1+w) , w the state parameter, b,c,d are real constants to be determined, and 2 < q < 3

so that
...a diverges at the GSFS.

The corresponding expansion of the scalar field φ(t) in the vicinity of the singularity is of the form

φ(t) = f (ts− t)+h(ts− t)r (3.9)

where 1 < r < 2 so that φ̈ diverges at the singularity and f ,h are real constants to be determined.
From eq. (3.3) and differentiated eq. (3.4), using the forms of the scale factor (3.8) and the

scalar field (3.9), we get two equations that contain only dominant terms in (ts− t), in which both
the left and right-hand sides diverge at the singularity for 0 < n < 1, 2 < q < 3 and 1 < r < 2.
Equating the power laws q and r of the divergent terms we obtain

r = n+1 (3.10)

q = r+1. (3.11)

and it follows that

q = n+2. (3.12)

4
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Figure 2: Numerical solutions of the second time derivative of the scalar field for n = 0.5,0.7,0.9.
Notice the divergence at the time of the singularity when the scalar field vanishes.

Figure 2 shows the divergence of the second derivative of the scalar field at the time of the
singularity. In figures 3a, 3b we plot the numerically verified derived power law dependence (eqs
(3.10), (3.12)) of the scalar field and the scale factor respectively, as the singularity is approached.
It is clear that eqs (3.10), (3.12) are consistent with the qualitatively expected range of r,q, for
0 < n < 1.
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Figure 3: Plots of numerical verification of the q-exponent (3a) and r-exponent (3b) for 3 values of
n (n = 0.5,n = 0.7 and n = 0.9). The orange dashed line, denotes the analytical, while the blue line
denotes the numerical solution. As expected the slopes for each n for both q and r are identical.

The additional linear and quadratic terms in (ts− t), in the expression of the scale factor (3.8),
play an important role in the estimation of the Hubble parameter and its derivative as the singularity
is aproached. An interesting result arises from the derivation of the relation between the coefficients

5
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b,c. The relations between these coefficients can lead to relations between the Hubble parameter
and its derivative close to the singularity, which in turn correspond to observational predictions,
that may be used to identify the presence of these singularities in angular diameter of luminosity
distance data. The relation between b,c is of the form

c =
ρ0,m

4a2
s
− 1

2
(as−1)m(m−1)− [(as−1)m−b]2

as
, (3.13)

and thus

Ḣ =
3Ω0,m

2a3
s
−3H2 (3.14)

and as a function of redshift parameter z at present time

H2(z) = Ω0,m(1+ z)3[1− (1+ z)3(1+ z0)
−3]+ (1+ z)6(1+ z0)

−6H2
0 , (3.15)

where H0,z0 are the Hubble and redshift parameter respectively at present time. This result may be
used as observational signature of such singularities in this class of models.

In the absence of the perfect fluid, the strength of the singularity remains unaffected. This
means that the evaluated relations of r and q (eqs (3.10), (3.12)) respectively, are exactly the same.
The Hubble parameter and its derivative in this case is

Ḣ =−3H2 (3.16)

and as a function of redshift parameter z at present time

H(z) =
H0(1+ z)3

(1+ z0)3 . (3.17)

These are the reduced relations of eqs (3.14) and (3.15) respectively, for ρ0,m = 0.

4. Modified Gravity: The Scalar-Tensor Quintessence case

The action of the theory, in this class of models, is of the form (2.2). The corresponding
dynamical equations are

3FH2 =
3Ω0,m

a3 +
φ̇ 2

2
+V −3HḞ (4.1)

φ̈ +3Hφ̇ −3Fφ

(
ä
a
+H2

)
+An|φ |(n−1)

Θ(φ) = 0 (4.2)

−2F
(

ä
a
−H2

)
=

3Ω0,m

a3 + φ̇
2 + F̈−HḞ , (4.3)

where Fφ = dF
dφ

. From eq. (4.1), it is clear that H, φ̇ ,F, Ḟ all remain finite when φ → 0 (t → ts).
However, in eq. (4.2) there is a divergence of the term Vφ for 0 < n < 1 and φ̈ → ∞ as φ → 0.
This means that F̈ → ∞ because of the generation of the second derivative of φ that leads to a

6
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divergence of ä in eq. (4.3). Clearly, an SFS singularity (Table 1) is expected to occur in scalar-
tensor quintessence models, as opposed to the GSFS singularity in the corresponding quintessence
models. Thus, the constraints on the power exponents q,r in this case are 1 < q < 2 and 1 < r < 2
respectively.

From the above dynamical equations, using the same parametrizations (3.8), (3.9) for the scale
factor and the scalar field respectively and keeping only the dominant terms, the values for r and q
are

q = r (4.4)

r = n+1, (4.5)

which leads to

q = n+1. (4.6)

In figures 4a, 4b we illustrate the numerically verified derived power law dependence eqs (4.5),
(4.6) of the scalar field and the scale factor respectively, as the singularity is approached. Figures
5a, 5b depict the divergence of the second derivative, of both the scale factor and the scalar field, at
the time of the singularity.
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Figure 4: Numerical verification of the q-exponent (4a) and r-exponent (4b), in the scalar-tensor
case, for 3 values of n (n= 0.2,n= 0.4 and n= 0.6). The orange dashed line, denotes the analytical,
while the blue line denotes the numerical solution. As expected the slopes for each n for both q and
r are identical.

The results (4.5) and (4.6) are consistent with the above qualitative discussion for the expected
strength of the singularity. Thus, in the case of the scalar-tensor theory, we have a stronger sin-
gularity at ts, as compared to the singularity that occurs in quintessence models. This is a general
result, valid not only for the coupling constant of the form F = 1− λφ but also for other forms
of F(φ) (e.g. F ∼ φ r), because the second derivative of F with respect to time, in the dynamical
equations, will always generate a second derivative of φ with divergence, leading to a divergence
of ä.
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Figure 5: Numerical solutions of the second time derivative of the scale factor (5a) and the scalar
field (5b) for n = 0.2,0.4,0.6. Notice the divergence of both the scale factor and scalar field at the
time of the singularity.

The quadratic term of (ts− t), in the expression of the scale factor (3.8), is now subdominant
as the second derivarive of the scale factor diverges. The only additional term of (ts− t) that can
play an important role in the estimation of the Hubble parameter, is the linear term. Clearly, for
the first derivative of (3.8), as t → ts from below, the linear term dominates over all other terms,
while the quadratic term is subdominant in the second derivative, in the divergence of the q-term.
Thus, in the case of the scalar-tensor quintessence models H remain finite and dominated by the
term b(ts− t), while Ḣ→ ∞ as t→ ts.

As in quintessence case of the previous section, in the absence of the perfect fluid, the strength
of the singularity remains unaffected. This means that the evaluated relations of r and q, eqs (4.5),
(4.6) respectively, are exactly the same.

5. Conclusions and Discussion

We have derived analytically and numerically the cosmological solution close to a future-time
singularity for both quintessence and scalar-tensor quintessence models. For quintessence, we have
shown that there is a divergence of

...a and a GSFS singularity occurs (as,ρs, ps remain finite but
ṗ→ ∞) , while in the case of scalar-tensor quintessence models there is a divergence of ä and an
SFS singularity occurs (as,ρs remain finite but ps → ∞, ṗ→ ∞). In the absence of the perfect
fluid in the dynamical equations, in both cases, we have shown that this result is still valid in our
cosmological solution.

These are the simplest non-exotic physical models where GSFS and SFS singularities naturally
arise. In the case of scalar-tensor quintessence models, there is a divergence of the scalar curvature
R = 6

(
ä
a +

ȧ2

a2

)
→ ∞ because of the divergence of the second derivative of the scale factor. Thus,

a stronger singularity occurs in this class of models. Such divergence of the scalar curvature is not
present in the simple quintessence case.

We have also shown the important role of the additional linear and quadratic terms of ts− t in
the form of the scale factor as t→ ts. However, in the scalar-tensor case the quadratic term becomes
subdominant close to the singularity.

8
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For quintessence models, we derived relations of the Hubble parameter, H2(z) = Ω0,m(1+

z)3[1− (1+ z)3(1+ z0)
−3]+ (1+ z)6(1+ z0)

−6H2
0 (for the fluid case) and H(z) = H0(1+z)3

(1+z0)3 (for the
no fluid case), close to the singularity. These relations may be used as observational signatures of
such singularities in this class of models.

Interesting extensions of the present analysis include the study of the strength of these sin-
gularities in other modified gravity models e.g. string-inspired gravity, Gauss-Bonnet gravity etc.
and the search for signatures of such singularities in cosmological luminosity distance and angular
diameter distance data.
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