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1. Introduction

The Minimal Supersymmetric Standard Model (MSSM) is one of the most common models of
beyond Standard Model physics building upon the concept of Supersymmetry (SUSY). Its enriched
Higgs sector consists out of two Higgs doublets leading to five physical Higgs bosons. In the
MSSM with real parameters, these are the CP-even h and H bosons, the CP-odd A boson and the
charged H± bosons. One of the CP-even Higgs bosons has to play the role of the Higgs boson
discovered at the LHC by the ATLAS and CMS experiments [1, 2]. It is a distinct feature of the
MSSM that the mass of this SM-like Higgs boson is predictable in terms of the model parameters.
Therefore, the Higgs boson mass can be used as a precision observable to constrain the available
parameter space.

Since the Higgs mass is heavily affected by quantum corrections, much work has been ded-
icated to the calculation of higher order corrections. Various techniques have been employed for
that: Fixed-order calculations allow to capture all corrections at a given order and are therefore
expected to be precise for low SUSY scales; in contrast, effective field theory (EFT) calculations
allow to resum large logarithmic contributions yielding precise results for high SUSY scales. In
FeynHiggs [3, 4, 5, 6, 7, 8, 9], both techniques are combined to obtain precise predictions also
for intermediary scales. Here, we review the work presented in [9].

2. Fixed-order calculation

The fixed-order approach is based on calculating the Higgs self-energies taking into account
contributions from SM particles, extra Higgs bosons as well as their superpartners. This allows to
capture all effects at a given order and allows to easily take into account different mass hierarchies.
If however some or all of the non SM particles are heavy, logarithmic contributions can become
numerically large spoiling the convergence of the perturbative expansion.

The self-energy corrections in FeynHiggs comprise full one-loop and two-loop corrections
of O(αtαs,αbαs,α

2
t ,αtαb,α

2
b ) [3, 4, 10, 11, 12, 5, 13, 14, 6, 15, 7, 16] obtained in the limit of

vanishing external momentum. They have been derived employing a mixed on-shell (OS) and
DR-scheme (more details can be found in [6]).

Having calculated the renormalized Higgs-boson self-energies, the physical masses of the CP-
even Higgs bosons are then obtained by finding the poles of the propagator matrix with its inverse
given by

∆
−1
hH(p2) = i

(
p2−m2

h + Σ̂MSSM
hh (p2) Σ̂MSSM

hH (p2)

Σ̂MSSM
hH (p2) p2−m2

H + Σ̂MSSM
HH (p2)

)
, (2.1)

where mh denotes the tree-level mass of the h boson; mH , the tree-level mass of the H boson.
Σ̂MSSM

hh,hH,HH are the corresponding renormalized MSSM self-energies. Finding the poles is equivalent
to solving the equation(

p2−m2
h + Σ̂

MSSM
hh (p2)

)(
p2−m2

H + Σ̂
MSSM
HH (p2)

)
−
(
Σ̂

MSSM
hH (p2)

)2
= 0. (2.2)

In the decoupling limit, MA�MZ , the reduced equation

p2−m2
h + Σ̂

MSSM
hh (p2) = 0 (2.3)
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allows to determine the mass of the lightest Higgs boson up to corrections suppressed by powers
of MA.

Solving Eq. (2.3) iteratively we obtain a simple expression for the physical mass of the lightest
Higgs,

(M2
h)FD = m2

h− Σ̂
MSSM
hh (m2

h)+ Σ̂
MSSM′
hh (m2

h)Σ̂
MSSM
hh (m2

h)+ . . . (2.4)

with the prime denoting the derivative of the self-energy with respect to the momentum squared
and the ellipsis standing for terms involving higher-order derivatives and products of differentiated
self-energies.

3. EFT calculation

As mentioned above, the fixed-order approach suffers from large logarithms if some or all of
the non SM particles are heavy. In such scenarios, EFT methods are beneficial. They allow to
resum large logarithms incorporating contributions beyond the order of fixed-order calculations. If
no higher-dimensional operators are included in the effective Lagrangian, terms suppressed by a
heavy scale are however neglected. Therefore, EFT calculations become unreliable for low SUSY
scales.

In the simplest EFT framework, all non SM particles are integrated out from the full theory at
a common mass scale MSUSY. Below MSUSY the SM remains as the low-energy EFT. The couplings
of the EFT are determined by matching to the MSSM at the scale MSUSY. In the case of the SM as
the EFT below MSUSY this concerns only the effective Higgs self-coupling λ , all the other couplings
are fixed by matching them to physical observables at the low-energy scale. Renormalization group
equations (RGEs) are used to evolve the couplings between the high scale MSUSY and the low scale,
which is typically chosen to be the top mass Mt .

The effective Higgs self coupling at the top mass scale, λ (Mt), is then used to determine the
SM MS Higgs mass

(mMS,SM
h )2 = 2λ (Mt)v2

MS (3.1)

with vMS being the MS vev (at the scale Mt).
The physical Higgs mass is then obtained by solving the corresponding pole equation

p2− (mMS,SM
h )2 + Σ̃

SM
hh (p2) = 0, (3.2)

with the renormalized SM Higgs boson self-energy Σ̃SM
hh .

We again can obtain a compact expression for the physical Higgs mass expanding perturba-
tively around the tree-level mass m2

h of the MSSM,

(M2
h)EFT = 2v2

MSλ (Mt)− Σ̃
SM
hh (m2

h)− Σ̃
SM′
hh (m2

h) ·
[
2v2

MSλ (Mt)− Σ̃
SM
hh (m2

h)−m2
h
]
+ ... . (3.3)

In FeynHiggs, full one-loop matching conditions, the dominant two-loop matching conditions
of O(αsαt ,α

2
t ) and three-loop RGEs are implemented. Therefore, all leading, next-to-leading and

O(αs,αt) next-to-next-to-leading logarithms are resummed. In addition to the simple single scale
scenario, mentioned above, the possibility of an intermediary electroweakinos scale allows to also
handle scenarios with low mass electroweakinos accurately.

2



P
o
S
(
C
O
R
F
U
2
0
1
7
)
1
2
8

Recent developments in FeynHiggs Henning Bahl

4. Hybrid calculation

To profit from the advantages of both approaches – high precision for low scales in the case
of the fixed-order calculation and high precision for high scale in the case of the EFT calculation
–, both are combined in FeynHiggs. More specifically the logarithms resummed in the EFT
approach are added to the fixed-order result by adapting Eq. (2.3),

p2−m2
h + Σ̂

MSSM
hh (p2)+∆Σ̂

2
hh = 0. (4.1)

Here, the quantity ∆Σ̂hh contains all logarithms resummed in the EFT approach as well as a sub-
traction term ensuring that the logarithms already contained in Σ̂MSSM

hh are not counted twice,

∆Σ̂
2
hh =−

[
2v2

MSλ (Mt)
]

log−
[
Σ̂

MSSM
hh (m2

h)
]

log. (4.2)

The subscript ‘log’ is used to indicate that only logarithmic contributions are taken into account.
Using this expression and expanding around the tree-level mass m2

h, the physical Higgs mass is
given by

(M2
h)FH = m2

h− Σ̂
MSSM
hh (M2

h)+
[
2v2

MSλ (Mt)
]

log +
[
Σ̂

MSSM
hh (m2

h)
]

log =

= m2
h +
[
2v2

MSλ (Mt)
]

log−
[
Σ̂

MSSM
hh (m2

h)
]

nolog

− Σ̂
MSSM′
hh (m2

h)
([

2v2
MSλ (Mt)

]
log−

[
Σ̂

MSSM
hh (m2

h)
]

nolog

)
+ . . . . (4.3)

Analogously to the label ’log’, the label ‘nolog’ is used to indicate that only terms not involving
large logarithms are taken into account.

Here, we assumed that the same renormalization scheme is used for input parameters of the
fixed-order and the EFT calculation. If this is not the case, a parameter conversion is necessary.
This is discussed in more detail in [8].

5. Comparison of hybrid and pure EFT calculation

For large SUSY scales suppressed terms become negligible. Therefore, we expect the hybrid
approach and the pure EFT approach to yield the same result. I.e., the large logarithms contained
in both results should coincide.

The logarithms of the EFT approach are given by (see Eq. (3.3))

(M2
h)

log
EFT =

[
2v2

MSλ (Mt)
]

log− Σ̃
SM′
hh (m2

h)
[
2v2

MSλ (Mt)
]

log + . . . , (5.1)

the logarithms of the hybrid approach by (see Eq. (4.3))

(M2
h)

log
FH =

[
2v2

MSλ (Mt)
]

log +
[
Σ̂

MSSM′
hh (m2

h)
]

log

[
Σ̂

MSSM
hh (m2

h)
]

nolog

− Σ̂
MSSM′
hh (m2

h)
[
2v2

MSλ (Mt)
]

log + . . . . (5.2)

Next, we split up the MSSM self-energies into a SM part and a non-SM part,

Σ̂
MSSM
hh (m2

h) = Σ̂
SM
hh (m2

h)+ Σ̂
nonSM
hh (m2

h). (5.3)
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This is allowed in the decoupling limit (MSUSY = MA � Mt), since the couplings of the lightest
Higgs become SM-like.

With this relation, we yield

(M2
h)

log
FH− (M2

h)
log
EFT =

[
Σ̂

nonSM′
hh (m2

h)
]

log

[
Σ̂

MSSM
hh (m2

h)
]

nolog

− Σ̂
nonSM′
hh (m2

h)
[
2v2

MSλ (Mt)
]

log + . . . . (5.4)

We observe that this difference originates from the momentum dependence of the non-SM contri-
butions to the Higgs self-energy. As shown explicitly at the two-loop level in [9], this difference
cancels out when subloop renormalization contributions to the two-loop self-energy are taken into
account. I.e., the vev-counterterm generates a contributions proportional to Σ̂nonSM′

hh (m2
h) compen-

sating the difference. Probably, also at higher orders the difference is cancelled in a similar manner.
A very similar analysis can also be performed for non-logarithmic terms.

In FeynHiggs, the pole equation Eq. (4.1) was solved numerically up to version 2.13.0.
Therefore, terms also beyond the order of the included two-loop corrections were induced. In
consequence, the difference discussed above was compensated at O(α2

t ,αtαb,α
2
b ) but not beyond.

E.g., terms of O(αtαew) were not compensated. It is however easy to enforce this compensation by
just eliminating all terms proportional to Σ̂nonSM′

hh (m2
h) which are not of O(αtαs,αbαs,α

2
t ,αtαb,α

2
b )

in the final equation for the Higgs mass. This can be achieved by an iterative solution of the pole
equation instead of a numerical one (implemented from version 2.14.0 on).

6. Numerical results

In this section, we show same example results for a simple single scale scenario with DR input
parameters. All soft masses, the Higgsino mass paramater µ and MA are set equal to MSUSY. All
trilinear couplings are set to zero (except of the one of the stop sector) and tanβ is chosen to be
equal 10.

In the left plot of Fig. 1, we investigate the numerical effect of the uncompensated terms
arising from the determination of the propagator pole. Up to FeynHiggs2.13.0 these terms
were taken into account. In the new FeynHiggs2.14.0, we improved the pole mass determi-
nation to prevent these terms from appearing. As we observe, this leads to downwards shift of the
Higgs mass. This shifts grows logarithmically with MSUSY reaching values of up to ∼ 2 GeV for
MSUSY ∼ 20 TeV.

In the right plot of Fig. 1, we show a comparison of FeynHiggs with improved pole deter-
mination to the pure EFT code SUSYHD [17]. The discrepany we observe for low scales (below
1 TeV) is caused by suppressed terms which are included in FeynHiggs by means of the fixed-
order calculation, whereas they are missed in SUSYHD. For higher scales, these terms become
negligible and both the results of both codes agree very well especially for vanishing stop mixing.
The small discrepancy for high scales (∼ 20 TeV) and XDR

t /MSUSY = 2 is caused by a different
parametrization of non-logarithmic terms (for more details see [9]).

7. Conclusions

Different methods are used to calculate the Higgs boson masses in the MSSM. Fixed-order
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Figure 1: Mh is shown in dependence of MSUSY for XDR
t /MSUSY = 0 (solid) and MSUSY for XDR

t /MSUSY = 2
(dashed). Left: The results of FeynHiggs with (red) and without (blue) the improved pole mass determi-
nation are compared. Right: The results of FeynHiggs with new pole mass determination (blue) and
SUSYHD (red) are compared. In the bottom panels, the difference between the blue and red curves is shown.

calculations are accurate for low scales. They however become inaccurate for high SUSY scales
due to large logarithms spoiling the convergence of the perturbative expansion. These logarithms
can be resummed using EFT techniques. Without taking into account higher dimensional operators,
EFT calculations miss in contrast suppressed terms and are therefore inaccurate for low scales.

We described how both methods have been combined in the code FeynHiggs to obtain a
prediction accurate also for intermediary scales. Furthermore, we compared the logarithms ob-
tained in our hybrid approach with those of a pure EFT calculation. We found that the non-zero
difference between both arising through the determination of the propagator pole is cancelled by
subloop-renormalization contributions. We adapted the determination of the propagator poles to
ensure that uncancelled terms beyond the order of the fixed-order calculation do not appear in the
final result.

In our numerical investigation, we found the terms arising from the determination of the prop-
agator pole to shift the Higgs mass downwards by up to 2 GeV. Taking this effect into account,
we found very good agreement of FeynHiggs with the pure EFT code SUSYHD for scales above
1 TeV, where suppressed terms become negligible.
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