PROCEEDINGS

OF SCIENCE

Integral symmetries with pySecDec

Stephan Jahn*
Max-Planck-Institut fiir Physik, Miinchen, GERMANY
E-mail: sjahn@mpp.mpg.de

We describe a new feature of pySEcDEC, a toolbox for parametric and loop integrals in the con-
text of dimensional regularization. Due to its modular structure, most algorithms implemented in
pySEcDEC’s algebraic preprocessing can be called in user-defined codes. Therefore, pySEcDEC
can be applied in contexts beyond numerical evaluation of parameter integrals. We show how the
symmetry finder in pySeEcDEcC can be used to identify matroid symmetries of anisomorphic
graphs. We further discuss its use within Loopedia, a database for loop integrals.

Corfu Summer Institute 2017 "School and Workshops on Elementary Particle Physics and Gravity"
2-28 September 2017
Corfu, Greece

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:sjahn@mpp.mpg.de

Integral symmetries with pySecDec Stephan Jahn

1. Introduction

Multi-loop calculations tend to be computationally intensive. It is therefore essential to sim-
plify all occurring algebraic expressions as much as possible. Often symmetries within the problem
can be largely exploited to reduce the complexity of intermediate steps.

Within sector decomposition [1, 2], a single parameter integral is transformed into many inte-
grals with similar integrand structure. However, these resulting integrals can often be identified to
be equal at integrand level by rearranging terms and renaming variables. These sector symmetries
are identified by a symmetry finder in pySEcDEc [3], the successor of SEcDEC [4, 5, 6].

Another complication in multi-loop calculations is the evaluation of the master integrals.
Loopedia [7] has been introduced as a database of known integrals to avoid unnecessary re-
computations. However, it is currently graph based, which makes it miss so called matroid [8]
symmetries; i.e. symmetries between anisomorphic graphs.

It turns out that finding sector and matroid symmetries is essentially the same problem. In this
article, we describe an extension of the polynomial canonicalization algorithm proposed in [9]. We
then demonstrate how the canonical representation of a Feynman parameterized loop integral is
used to identify matroid symmetries.

This article is organized as follows: We summarize the extended polynomial canonicalization
algorithm in section 2. Its application to identify matroid symmetries is described in section 3.
Prospects for an extension of Loopedia are discussed in section 4. We close with concluding
remarks in section 5.

2. Canonical representation of polynomials

A key concept to finding matroid and sector symmetries is to identify two polynomials with
one another when permutations of subsets of variables are allowed. For example,

1 1
/dxdy (x+2y) :/dxdy (y+2x);
0 0

i.e. the integration variables can be relabelled. Algorithms to find symmetries when all variables
are equivalent have been introduced in [9, 10]. Their implementation in pySecDEec is discussed
in [11]. To find matroid symmetries, arbitrary relabelling of additional parameters (e.g. masses)
must be taken into account as well, for example,

myp<—>my

1 1
/dxdy (sx+myy+2my) /dxdy (sy+max+2my),
0 0

if m; and m; can be interchanged. In the following, we describe a generalization of the algorithm
in [9] that allows for multiple sets of interchangeable (“‘equivalent") variables.

As a first step, polynomials are expressed as a matrix of exponents and coefficients. Each
row corresponds to one term of the polynomial. The first column consists of the coefficients of
the terms while the remaining columns store the powers of the occurring variables. An example is
shown in Figure 1.

Integral symmetries with pySecDec Stephan Jahn

coefficient m; mp s x y

Loy sl -y 1 00110
+ Loy om0 a0yt — 1 10001
+2~m(1)-m%-s0~xo-yo - 2 01000

Figure 1: Representation of the polynomial sx + my + 2m, as an integer matrix.

If the coefficient is not an integer, it is sufficient to replace each individual coefficient with
a unique index during the canonicalization. Multiple polynomials can be canonicalized simulta-
neously by multiplication of a label to the coefficient of each polynomial or by adding a column
with an index identifying the polynomial. Writing the polynomial as an integer matrix facilitates to
tackle the problem without a computer algebra system. Finding equality of two polynomials under
relabelling corresponds to finding equality of their matrices while allowing for permutations of the
rows and columns. Rather than generating and trying all permutations, it is much more efficient to
bring the polynomials to compare into a canonical form.

To canonicalize a polynomial, we suggest a generalization of the algorithm in [9]. The key
idea is to build a canonical representation column by column. In the following detailed description,
we assume that the first column of the matrix corresponds to the coefficients, the next n; columns
to the powers of the first set of equivalent parameters, the next n, columns to the powers of the
second set of equivalent parameters and so on.

(i) Write the polynomial as an integer matrix, see above.
(i) Make n; copies of the matrix. In the i copy, swap the column of the i parameter parameter
with the column of the first parameter.
(iii) In all copies, sort rows lexicographically by the columns corresponding to the coefficient and
the first parameter.

(iv) Discard all but those copies with the lexicographically smallest columns corresponding to

the first parameter.

(v) For all remaining copies of the matrix, make n; — 1 new copies and swap the column corre-

sponding to the i parameter with the column corresponding to the second parameter in each

i new copy.

(vi) In all copies, sort rows lexicographically by the columns corresponding to the coefficient and
the first two parameters.

(vii) Discard all but those copies with the lexicographically smallest columns corresponding to
the second parameter. Note that some of the remaining matrices are likely to appear multiple
times. It is strongly advisable to check for and delete repetitions in this step as well.

(viii) Repeat the procedure with the remaining parameters that are equivalent to the first parameter.

(ix) Repeat all previous steps for all remaining matrices for every group of equivalent variables.

When considering the j' group of equivalent parameters, always include the coefficient and

all n;; variables in the sorting steps; i.e. a after a column has been included in the sorting, it
should be included in all later sortings.

Integral symmetries with pySecDec Stephan Jahn

(x) Pick the lexicographically smallest matrix as the canonical representation.

Our generalization to the algorithm in [9] is the second to last step, where we repeat the original
algorithm for all sets of equivalent parameters.

3. Matroid symmetries

Matroid symmetries are manifest in Feynman parameterization by comparing the Symanzik
polynomials % and .% under relabellings of the external momenta, the masses, and the Feynman
parameters. Consequently, to systematically identify matroid symmetries within a given database
(e.g. Loopedia), we first Feynman parameterize all the loop integrals as

[(Ny —LD/2) [{ - N ag/Nv (L+1)D/2
G=(-1)M / dxjx; 8(1-Y) x)) , (3.1
Hj 11—* V])]I;II Z FNy ZN,—LD/2

where N is the number of propagators, v; the power of the j" propagator, N, = Z_I;’: 1V, L
the number of loops and D the dimension to compute the integral in. We restrict the following
discussion to integrals without inverse or dotted propagators; i.e. to integrals with all v; = 1, which
also implies Ny = N.

P p
m0 m1
m0
m1
m0
p m1 p
(a) (b)

Figure 2: Example of anisomorphic graphs corresponding to the same integral.

Our goal is to identify anisomorphic graphs that have an equivalent Feynman parameter repre-
sentation. Consider for example the two graphs shown in Figure 2. Computing their corresponding

Integral symmetries with pySecDec Stephan Jahn

Symanzik polynomials with pySEcDEC, we get

U q =+ X0X1X3 + X0X1X4 + X0X2X3 + X0X2X4 + X0X3X4 -+ X0X3X5 + X0X4X5 + X1 X3X5
+ X1X4X5 + X2X3X5 + X2X4X5 + X3X4X5

Fa=+ m%xox1x3X4 + m%x0x1X3X5 + m%xox 1x421 + m%xox1X4X5 + m%xoxz)@xz; + m%xoxzx3x5
+ m%xoxzxﬁ + m%xoxgmxs + m%xoxg,xﬁ + 2m%x0x3x4X5 + m%xoxgxg + m%xoxﬁxs
+ m%xoxp% + m%x 1X3X4X5 + m%x 1X3x§ + m%x 1xﬁx5 + m%x1x4x§ + m%x2x3x4x5
+ m%xzxgxg + m%xzxixs + m%xz)mx% + m%)@xﬁxs + m%xgmxg + m%x(z)x 1X3
+ m(%x%xl)m, + m(z)x(z)xp@ + m%x(z)xz)m + m%x%x3x4 + m%x%x3x5 + m(z)x%x4x5
+ m%xox%m + m%xox%m + 2m3x0x1x2x3 + Zm%xoxlxzm + m(z)xoxlx% + 2m(2))C0)C1)C3X4 32
+ 2m%x0x1X3X5 + 2m%x0x1X4X5 + m(z)xox%)@ + m%xox%)m + m(z)xoxzx§ + Zm%xoxgxyca, G2
+ 2m%x0x2x3X5 + 2m%x0x2x4xs + m%xox%m + m%xox%x5 + 2m6xox3X4x5 + m%x%xgxs
+ m%x%mxs + 2m%x1x2x3X5 + Zm%xlxzx4x5 + m%xlx%x5 + 2m(2)x1x3x4xs + m%x%xycs
+ m%x%x;;xs + m(z)xzx%xs + Zm%xZX3x4xs + m%x%mxs — pzxox 1X2X3 — p2x0x1x2x4
- P2X0x1x3x4 - p2x0xzx3x5 - P2x0X2X4XS - P2X0X3X4XS - P2X1x2x3x5 - P2X1X2X4XS
— PPX1X3%X4%5

%b :%a (X() Hxl)

Fp=F4(x0 ¢ x1,mg <> my);

i.e. their Symanzik polynomials % and .# are equal with the permutations xo <> x| and m; <>
my. The labelling of the Feynman parameters xg to x5 depends on the ordering of the internal
and external lines in the input to pySeEcDEC and is therefore arbitrary. The masses mg and m;
are arbitrary and therefore interchangeable. As a consequence, their Feynman representations are
equivalent since the two graphs have the same numbers of loops and propagators.

To identify permutations of the external momentum labels, we keep all scalar products as they
are except for squared momenta. Squares of external momenta may be set equal to an internal mass
and are therefore considered equivalent to the masses.

In addition to relabellings, any one of the external momenta can be eliminated by momentum
conservation. Eliminating a different external momentum leads to in general inequivalent repre-
sentations of the integral that are not necessarily related by relabelling. To identify all symmetries,
in principle all canonical representations with either external momentum eliminated must be con-
sidered. However, inserting momentum conservation is the only operation in the canonicalization
process that can change the total number of appearing variables and the number of terms. We
therefore only consider the representations with the lowest number of variables and, out of those,
the representations with the lowest number of terms. Considering these shortest representations
only should still identify all matroid symmetries, as long as every vertex connects to at most one
external leg.

4. Matroid symmetries in Loopedia

Loopedia is a database of Feynman integrals that allows to search the database for literature

Integral symmetries with pySecDec Stephan Jahn

on a given graph rather than conventional search keys like author, title, etc. However, Loopedia
currently only shows results corresponding to graphs that are isomorphic to the input graph. Ar-
ticles considering the corresponding integral are missed if they are listed in the database under a
different graph that is related by a matroid. We now comment on how to obtain a canonical form of
the integrals present in the Loopedia database. Given a canonical representation for every graph,
Loopedia could point the user to other graphs that are related by a matroid symmetry e.g. in the
single graph view or in the graph browser.

Loopedia considers three different types of masses: Nonzero masses, special masses and
general masses. Special masses denote a particular mass for which the integral has been computed.
A general mass denotes a mass that can be set an arbitrary value including zero, while a nonzero
mass can take any nonzero value. When searching for symmetries, any relabelling within these
three groups of masses must be considered. The squared momenta of the external legs are parame-
terized as masses out of the same sets as the internal masses; i.e. an internal mass squared and and
external momentum squared are interchangeable if they belong to the same class of masses.

After inserting momentum conservation (in all possible ways as discussed in the previous
section), the remaining scalar products form the kinematic invariants. These invariants and the
Feynman parameters form the remaining sets of equivalent variables where relabellings should be
considered.

5. Conclusion

We have extended an algorithm [9] to canonicalize polynomials with each other under rela-
belling of groups of variables. Our extension accounts for multiple sets of parameters to be consid-
ered equivalent, e.g. masses, Feynman parameters, etc. The extended canonicalization algorithm
is implemented in pySECDEC.

We have stressed the usability of pySEcDEc beyond numerical evaluations of loop inte-
grals. As an example, we have discussed how the symmetry finder can be applied to identify
matroid symmetries between anisomorphic graphs. We further have discussed prospects of extend-
ing Loopedia to identify such matroid symmetries.

Acknowledgments

I thank my fellow SEcDEc and Loopedia developer teams, Christian Bogner, Sophia Borowka,
Thomas Hahn, Gudrun Heinrich, Stephen Jones Matthias Kerner, Andreas von Manteuffel, Martin
Michel, Erik Panzer, Johannes Schlenk, and Tom Zirke, for helpful discussions and the success-
ful collaboration. I further thank Ben Ruijl for completing our implementation of Pak’s original
algorithm.

References

[1] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop
integrals, Nucl. Phys. B585 (2000) 741-759, [hep-ph/0004013].

[2] G. Heinrich, Sector Decomposition, Int. J. Mod. Phys. A23 (2008) 1457-1486,[0803.4177].

https://arxiv.org/abs/hep-ph/0004013
https://doi.org/10.1142/S0217751X08040263
https://arxiv.org/abs/0803.4177

Integral symmetries with pySecDec Stephan Jahn

(3]

[10]

[11]

S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk et al., pySecDec: a toolbox for
the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313-326,
[1703.09692].

J. Carter and G. Heinrich, SecDec: A general program for sector decomposition,
Comput.Phys.Commun. 182 (2011) 1566—-1581,[1011.5493].

S. Borowka, J. Carter and G. Heinrich, Numerical Evaluation of Multi-Loop Integrals for Arbitrary
Kinematics with SecDec 2.0, Comput.Phys.Commun. 184 (2013) 396-408, [1204.4152].

S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical
evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470-491,
[1502.06595].

C. Bogner, S. Borowka, T. Hahn, G. Heinrich, S. P. Jones, M. Kerner et al., Loopedia, a Database for
Loop Integrals, Comput. Phys. Commun. 225 (2018) 1-9,[1709.01266].

C. Bogner and S. Weinzierl, Feynman graph polynomials, Int. J. Mod. Phys. A25 (2010) 2585-2618,
[1002.3458].

A. Pak, The Toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques,
J. Phys. Conf. Ser. 368 (2012) 012049, [1111.08638].

B. D. McKay and A. Piperno, Practical graph isomorphism, ii, Journal of Symbolic Computation 60
(2014) 94 - 112.

S. P. Jones and B. Ruijl, To appear in the proceedings of the 18th International Workshop on
Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017), Journal of Physics:
Conference Series (2017) .

https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://doi.org/10.1016/j.cpc.2011.03.026
https://arxiv.org/abs/1011.5493
https://doi.org/10.1016/j.cpc.2012.09.020
https://arxiv.org/abs/1204.4152
https://doi.org/10.1016/j.cpc.2015.05.022
https://arxiv.org/abs/1502.06595
https://doi.org/10.1016/j.cpc.2017.12.017
https://arxiv.org/abs/1709.01266
https://doi.org/10.1142/S0217751X10049438
https://arxiv.org/abs/1002.3458
https://doi.org/10.1088/1742-6596/368/1/012049
https://arxiv.org/abs/1111.0868
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003

