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1. Introductions

We present an alternative description of magnetic monopoles in quantum mechanics (QM)
defined on either commutative or noncommutative (NC) space, in both cases by generalizing the
considered class of physical states. As the reader might be unfamiliar with at least one of the topics,
we will introduce them both.

1.1 Magnetic monopoles

Magnetic monopoles have never been observed directly, yet they keep appearing in physical
theories for nearly a century. The only evidence of their existence, even though just indirect, is
the discreteness of electric charge, which is required by the consistency of the theory and is indeed
observed in nature. The general belief is that magnetic monopoles do exist but are too heavy (on
the grand unification scale) to be produced in accelerators and those formed shortly after the Big
bang were diluted by the process of inflation.

Formalism of the classical electromagnetism is largely build on the premise that magnetic
monopoles do not exist, instead of working with electromagnetic fields we work with electromag-
netic potentials, the non-existence of magnetic monopoles follows directly from div B= div rot A=

4πρM = 0 valid for regular A. Obviously, to describe monopoles we could just return to the notion
of fields, yet from the point of view of theories such as special relativity or quantum mechanics,
the notion of potentials is largely preferred.

Fortunately, there is a workaround. Dirac showed that sources of magnetic fields can be de-
scribed by potentials singular on a (half-)line, so-called Dirac string, see [1]. Later, Yang found
that the singular behavior is not necessary. Instead, one can use two regular potentials defined
in different but overlapping regions, each of them avoiding the singularity and together covering
entire space outside the monopole, see [2].

In modern theories, monopoles often appear as topological solutions to field theories (traces
of topology can be found already in the approach of Yang). The notorious examples are the grand
unification monopoles of ’t Hooft and Polyakov [3, 4] and the Kaluza-Klein monopoles of Gross,
Perry and Sorkin [5, 6].

We present an alternative description of magnetic monopoles by lifting the theory one dimen-
sion up, a method explored in the context of electromagnetism in [7, 8]. However, our focus is on
quantum mechanics, therefore our results are to be compared to those of Zwanziger, who studied
such theory in some detail in [9].

1.2 Noncommutative theories

Noncommutative space is a space whose very close points cannot be distinguished. Its coor-
dinates do not commute in a similar fashion as the momentum and the coordinate operators do not
commute in ordinary QM. Such spaces sometimes serve as an effective description for physical
theories on scales reachable in laboratory experiments. However, they are also a rather general
consequence of theories of quantum gravity, where they become relevant only on the Planck scale.

That the space cannot be probed below this scale follows from a simple thought-experiment:
If one tries to distinguish two points separated by a Planck length, the used photon (or any other
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particle for that matter) would be energetic enough to be hidden under its own event horizon, a
black hole would be formed and no information could be obtained.

Consider the difference in the formalism of classical and quantum mechanics caused by the
phase space noncommutativity of the latter. A similar leap is to be expected in the case of non-
commutativity of the underlying space. The ultimate goal is to obtain a proper formulation of NC
quantum field theory, as dual to UV distances, UV energies are removed as well. However, we
settle for NC QM to be our starting point to understand the consequences of the space noncommu-
tativity, to learn how to formulate the theory in a consistent way and to study new prospects (and
problems) it brings.

There are many examples of NC spaces, see [10, 11, 12, 13]. We will consider the three-
dimensional, rotationally invariant space R3

λ
, which was constructed in [14] and studied in greater

detail in [15, 16, 17, 18, 19, 20]. We have shown in [21, 22] that monopoles can be described
in R3

λ
QM by considering a generalized class of physical states. Even though the space R3

λ
is

usually understood to be a sequence of concentric fuzzy spheres, it can be also obtained by the
means of Kontsevich quantization. Applying the same approach in the pre-quantized theory, one
can describe magnetic monopoles in ordinary R3 QM as well (as was studied in [23] and will be
briefly sketched in the next section).

The paper is organized as follows: in Section 2 we present an alternative description of mag-
netic monopoles in ordinary QM. In Section 3 we show a brief construction of QM in NC space
R3

λ
. In Section 4 we discuss magnetic monopoles in NC QM introduced in a similar fashion to

Section 2. The last Section is devoted to conclusions.

2. Magnetic monopoles in quantum mechanics

A quantum-mechanical theory usually requires two ingredients: a Hilbert space of states and
physical observables realized as operators on it. The notorious example is the Hilbert space of
square-integrable functions equipped with the norm

||Ψ||2 =
∫

Ψ
∗(x)Ψ(x)d3x, (2.1)

with the position or the momentum operators defined as

x̂iΨ(x) = xiΨ(x), (2.2)

p̂iΨ(x) = −i∂iΨ(x).

This is built on the underlying space R3, however, it is not a necessity, the Hilbert space with
the observables of the same structure can be built on C2 as well. This space has two complex
coordinates zα ,α = 1,2 and is equipped with the Poisson structure

{zα ,z∗β} = −iδαβ , {zα ,zβ} = {z∗α ,z∗β} = 0. (2.3)

We can define a Hilbert space of square-integrable functions Φ(z,z∗) equipped with the norm

||Φ2||=
∫ 2r

π
Φ
∗(z,z∗)Φ(z,z∗)dzdz̄, (2.4)
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where r = z̄z. The Poisson structure 2.3 allows us to naturally construct many important operators,
for example the Laplacian

∆Φ(z,z∗) =
1
r
{z∗α ,{zα ,Φ(z,z∗)}}. (2.5)

So far this seems nothing like the ordinary QM. However, recall that the spaces in question,
R3 and C2, are closely related as their rotational groups are locally isomorphic. In fact, one can
parametrise C2 as

z1 =
√

r cos(θ/2)e
i
2 (−φ+γ), z∗1 =

√
r cos(θ/2)e−

i
2 (−φ+γ), (2.6)

z2 =
√

r sin(θ/2)e
i
2 (φ+γ), z∗2 =

√
r sin(θ/2)e−

i
2 (φ+γ).

If we now identify
xi = z̄σ

iz, (2.7)

where σ i are the Pauli matrices, we recover xi expressed in terms of spherical coordinates (r,θ ,φ).
This is a Hopf fibration, mapping points from S3 in C2 into points of S2 in R3. The angle γ , with
the topology S1, cancels out in this relation.

Instead of considering any (square-integrable) function Φ(z,z∗), let us restrict ourselves only
on those of the form Φ(x), with x defined in 2.7. This Hilbert subspace is the same as the usual
Hilbert space of QM in R3. Actually, action of the naturally defined operators is the same as well

∆Φ(x) =
1
r
{z∗α ,{zα ,Φ(x)}}= ∂xi∂xiΦ(x), (2.8)

x̂iΦ(x) = xiΦ(x),

V̂iΦ(x) ≡ 1
2
[∆, x̂i]Φ(x)

= − i
2r

σ
i
αβ

(z∗α∂z∗
β
+ zβ ∂zα

)Φ(x)

= −i∂xiΦ(x),

L̂iΦ(x) =
i
2
{xi,Φ(x)}= εi jkx̂ jV̂kΦ(x).

When the Hilbert space is the same and so is the algebra of operators, there is not much left to differ
(the norms coincide as well). Therefore, we conclude that this is a reformulation of the ordinary
QM on C2 instead of R3.

Usually, one can introduce magnetic monopoles in QM by using a vector potential Ai singular
on a (half-)line, see [1], or by using two regular potentials, see [2]. We will now show that there is
another way of doing so in the C2 formulation of QM.

The first step is to lower our restriction for the Hilbert space states. So far, we have only been
considering those of the form Φ(x), where x depended on z,z∗ as specified in 2.7. As a result,
the wave-functions always contained equal powers of z and z∗ (since so does x). As we will show
shortly, magnetic monopoles can be described using states of the form

Φκ(z,z∗) = Φ(x) ·ξκ , ξκ =

(
z1

z∗1

) κ−δ

4
(

z2

z∗2

) κ+δ

4

, (2.9)

or expressed using 2.6
ξκ = ei κ

2 γei δ

2 φ . (2.10)
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As the angles γ,φ are periodic (with a period of 4π), for the wave-function to be uniquely defined
we need κ and δ to be integers. Note that ΦκΦ∗κ always contain the same powers of z and z∗,
therefore can be expressed as a function of x and has a proper probabilistic interpretation in R3.

It can be shown that the operators defined the same way as in 3.7 act differently now, as
functions Φκ do not depend only on x. One can easily prove (using that {zα , .}=−i∂z∗α , {z∗α , .}=
i∂zα

and the chain rule for derivatives) that

εi jkx̂ jV̂kΦκ =

(
L̂i +

κ

2
x̂i

r

)
Φκ , (2.11)[

V̂i,V̂j
]

Φκ = i
κ

2
εi jk

x̂k

r3 Φκ , (2.12)

which are exactly the relations holding for a system containing a magnetic monopole of strength µ

as derived, for example, in [9]. To complete the identification we need to set κ/2 = µ . The Dirac
quantization condition states that µ has to be a half-integer, but as in our case κ is an integer, the
identification is perfect.

The smoking gun evidence for the monopole presence is the vector potential, which can be
extracted as

V̂jΦκ = (−i∂x j Φ(x))ξκ +A jΦκ , A j =−
i

2rξκ

σ
j

γδ
zδ (∂zγ

ξκ). (2.13)

With our choice of ξκ the only nontrivial component (in spherical coordinates) is

Aφ =
δ +κ cos(θ)

2r sin(θ)
, (2.14)

which leads to Coulomb-like magnetic field

Bi = (rot A)i =−
κ

2
xi

r3 . (2.15)

It is obvious that the δ part is irrelevant and can be gauged away. However, it can also be kept and
used to direct the Dirac (half-)string, as the choice of δ = ±κ produces potential singular on the
north and the south pole correspondingly.

We conclude that generalized Hilbert space of states of QM formulated in C2 instead of R3

describes magnetic monopoles of any strength allowed by the Dirac quantization condition.

3. Noncommutative quantum mechanics

As we have seen, QM does not need R3 to be defined. There is a great interest in so-called
noncommutative (NC) spaces, that means spaces whose points cannot be distinguished below some
fundamental scale. Similarly to ordinary QM, where the inability to measure exactly the position
and the momentum of a particle is encoded in [x̂i, p̂ j] 6= 0, such spaces, sometimes also referred to
as quantum, are described by an NC relation

[xi,x j] 6= 0. (3.1)
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For spaces equipped with Poisson structure, we can use the means of canonical quantization. In the
case of the space C2, which was discussed in the previous section, it is done as follows:

{zα ,z∗β}=−iδαβ → [zα ,z∗β ] = λδαβ ,

{zα ,zβ}= 0 → [zα ,zβ ] = 0,
{z∗α ,z∗β}= 0 → [z∗α ,z

∗
β
] = 0,

(3.2)

where λ is a constant with the dimension of length which describes the scale below which one
cannot distinguish two close points of space. These quantized coordinates can be realized using
two sets of creation and annihilation (c/a) bosonic operators aα ,a+α ,α = 1,2 satisfying the usual
commutation relations [aα ,a+β ] = δαβ and 0 otherwise. These act on an auxiliary Fock space
spanned by normalized states

|n1,n2〉=
(a+1 )

n1 (a+2 )
n2

√
n1!n2!

|0〉. (3.3)

We can use the relation 2.7 to carry this to three dimensions, creating three-dimensional, rotation-
ally invariant noncommutative space R3

λ
defined by

[xi,x j] = 2iλεi jkxk. (3.4)

This is usually the starting point which can be also obtained by considering a sequence of concentric
fuzzy spheres filling the entire three dimensional space (instead of considering just one of a fixed
radius). The Cartesian NC coordinates and the radial coordinate r are expressed using the c/a
operators in a similar fashion to 2.7 as

xi = λa+σ
ia,r = λ (a+α aα +1), (3.5)

note that x2 = r2−λ 2.
Following the same steps as in the previous section, we can construct QM in this NC space.

The wave-functions are now functions Ψ(a,a+) of the c/a operators and their scalar product is
defined as

(Φ, Ψ) = 4πλ
2Tr[Φ r̂ Ψ], r̂Ψ =

1
2
(rΨ+Ψr) , (3.6)

where the weight in the norm was chosen to obtain the correct commutative limit. This defined
the Hilbert space, operators on it can be also defined using the c/a operators, for example, the NC
counter-parts to 3.7 are defined as

Ĥ0Ψ = − 1
2λ r

[a+α , [aα ,Ψ]], (3.7)

X̂iΨ =
1
2
(xiΨ+Ψxi) ,

V̂iΨ ≡ i
[
Ĥ0, X̂i

]
Ψ

= − i
2r

σ
i
αβ

(a+α [aβ ,Ψ]−aβ [a
+
α ,Ψ])

L̂iΨ =
i

2λ
[xi,Ψ].

This way we can realize QM in a similar way as in the previous chapter. The only difference is that
we are not able to construct states localized in a region of radius smaller than λ and that the energy
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has an upper cut-off Emax ∼ λ−2. Preserving the rotational symmetry has many advantages, for
example, the Hydrogen atom problem remains exactly solvable, see [18]. Study of the velocity
operators [17] revealed how the UV cut-off manifest itself in terms of higher symmetry (SO(4)
instead of the expected SO(3)).

4. Generalized states

We can now continue in a similar fashion as in the commutative case, generalize the considered
Hilbert space to introduce monopoles. The wave-functions now contain an unequal number of
creation and annihilation operators

Ψκ ′(e−iτa+,eiτa) = e−iτκ ′
Ψκ ′(a+,a), τ ∈ R, fixed κ

′ ∈ Z, (4.1)

where κ ′ counts their difference.
As was shown in [21], the algebra of operators reproduces that of magnetic monopoles, but

now with an occasional λ dependent correction, for example

[
V̂i,V̂j

]
= i
−κ ′

2
εi jk

X̂k

r̂(r̂2−λ 2)
. (4.2)

In [21] it has been shown that the Coulomb problem of a system containing magnetic monopoles
constructed this way remains exactly solvable. As it turned out in [22], most of the important
components of QM (and possibly even more) are consistent with the monopole structure. If we
denote âΨ = aΨ and b̂Ψ = Ψa (and similarly for creation operators), then

Ŝi j =
1
2

εi jk (â+ σk â − b̂+ σk b̂), Ŝk4 =
1
2
(â+ σk â + b̂+ σk b̂) ,

Ŝ05 =
1
2
(â+ â + b̂+ b̂), Ĉ = â+ â − b̂+ b̂ , (4.3)

Ŝ0k =
i
2
(â+ σk b̂ − b̂+ σk â) , Ŝ45 =

i
2
(â+ b̂ − b̂+ â) ,

Ŝk5 =
i
2
(â+ σk b̂ + b̂+ σk â) , Ŝ04 =

1
2
(â+ b̂ + b̂+ â) , (4.4)

is an operator representation of su(2,2) accompanying the velocity operator, the angular momen-
tum operators, the free Hamiltonian, the dilation operator and the Laplace-Runge-Lenz operator
(in some cases the factor of r̂−1 is needed to assure Hermiticity under 3.6, see the discussion in
[22]). Action of the central element Ĉ+2 is on Ψκ ′ states equal to κ ′. In other words, the way of
describing magnetic monopoles in NC QM by considering a generalized class of physical states is
consistent with the most important physical operators already present.

5. Conclusions

We have presented two different topics. The first was an alternative description of magnetic
monopoles in quantum mechanics, the other was a construction of quantum mechanics in an NC
space. Both of them utilized the close relation between the spaces C2 and R3. It is the extra degree
of freedom that allows the description of monopoles and it is the natural Poisson structure that
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allows the quantization of the space(s). Therefore, it shall be of no surprise that both of these are
compatible and NC QM with magnetic monopoles can be constructed as well.

Even though we find the succession presented in this report more logical, the historical order
is that we analyzed NC QM first, see [17, 18, 19, 20], then found out the generalization introducing
the monopoles, see [21, 22], and considered the commutative theory only afterward, see [23]. The
outlook, for now, is to utilize the found symmetries and consider the relativistic generalization of
the theory.

Acknowledgments

This research was partially supported by COST Action MP1405 (S.K. and P.P), project VEGA
1/0985/16 (P.P.) and the Irish Research Council funding (S.K.). The speaker is grateful for the
hospitality provided to him at the Corfu Summer Institute 2017.

References

[1] P. A. M. Dirac, Proc. Roy. Soc. A133, 60 (1931).

[2] C.N. Yang, Annals of the New York Academy of Sciences 294, 86 (1977).

[3] G. ’t Hooft, Nuclear Physics B79, 276 (1974).

[4] A. M. Polyakov, JETP Letters 20, 194 (1974).

[5] R. D. Sorkin, Phys. Rev. Lett. 51, 87 (1983).

[6] D. J. Gross and M. J. Perry, Nucl. Phys. B 226, 29 (1983).

[7] L.H. Ryder, J. Phys. A 13, (1979).

[8] M. Minami, Progress of Theoretical Physics, 62 (1979).

[9] D. Zwanziger, Phys. Rev. 176, 1480 (1968).

[10] H. J. Groenewold, Physica 12, 405 (1946).

[11] S. Snyder, Phys. Rev. 71, 38 (1947).

[12] J. Madore, London Math. Soc. Lec. Note Ser. 257, Cambridge University Press (2002).

[13] A. Connes, Publ. IHES 62, 257 (1986), A. Connes, Noncommutative Geometry, Academic Press
London (1994).

[14] A. B. Hammou, M. Lagraa and M. M. Sheikh-Jabbari, Phys. Rev. D66, 025025 (2002).

[15] V. Gáliková and P. Prešnajder, J. Phys.: Conf. Ser. 343, 012096 (2012).

[16] V. Gáliková and P. Prešnajder, Jour. of Math. Phys. 54, 122106 (2013).
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