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1. Introduction

Sigma models are maps from a domain Σ , taken to be a (super) manifold, into another (super)
manifold T called the target space. Mathematically these models may be described as “harmonic
maps” due to their geometric target space interpretation, whereas they are typically thought of as
lower dimensional field theories from the point of view of Σ.

Historically the name derives from an article by Gell-Mann and Levy [1] who introduced both
a particular linear and a particular non-linear model for to describe a particle σ participating in beta
decay together with pions.

The general (bosonic) nonlinear sigma model with its geometric interpretation was gradually
introduced in the late 1970s. See, e.g., [2].

In this very brief and biased review, we shall take a quick look at some of the areas where
sigma models play a role and then focus on their importance as probes of the geometry on T , in
particular when combined with supersymmetry. This latter field was pioneered by Zumino in [4]
and by Alvarez-Gaume and Freedman in [5].

Nonlinear sigma models show perturbative renormalisability and asymptotic freedom [6], [7].
They have a number of supersymmetric [4], [5], [8], [9], as well as Wess-Zumino-Witten exten-
sions [10], [11], and describe phenomenon ranging from spontaneous symmetry breaking [1] to the
dynamics of string world-sheets [12]. Below, in sec. 3, are some examples.

2. Definition

The maps from Σ to T we considered are

φ
i : Σ→T : xµ 7→ φ

i(x) (2.1)

where xµ , µ = 1, ...,d, are coordinates on Σ and their images φ i(x), i = 1, ...,n, coordinates on T .
The actual form of the maps is found by extremizing the action

S =
∫

dx
(
gi j(φ)∂µφ

i
∂

µ
φ

j + . . .
)
, (2.2)

where the symbolic measure dx and possible additional terms will depend on the dimension of Σ,
the number of supersymmetries etc. Extremizing S with respect to φ leads to the equation

gi j(φ)
(

∂
2
φ

j +∂
µ

φ
k
Γ

j
kn ∂µφ

n + . . .
)
= 0 (2.3)

The symmetric tensor gi j is a metric on T , and Γ is is a metric connection, (in 2d possibly including
torsion). Thus interpreted, the equation is the pullback of the covariant Laplacian, hence the name
“harmonic map”.

When (2.2) is extended to include a potential for the scalar fields it is called a Landau Ginsberg
model and has important applications in solid state theory [13].

3. Examples

To be explicit, here are a few examples. The subscript on Σ indicates its dimension:
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• Quantum Mechanics: Σ1 = time, T = line

• Relativistic particle: Σ1 = time, T = Spacetime, S =
∫

dx0
(
gi j(X)Ẋ iẊ j

)
• Relativistic string (in conformal gauge): Σ2 = (τ,σ), T = Spacetime

• 2d sigma model: Σ2, T = General, S=µ
∫

d2x
(
gi j(φ)η

ab∂aφ i∂bφ j +Bi j(φ)ε
ab∂aφ i∂bφ j

)

We note that µ is a dimensionless coupling. Correspondingly, classically the model is confor-
mally invariant. As a two dimensional field theory, the metric and B field should be interpreted as
generalised coupling constants. In the quantum theory they will in general scale with energy. For
the case of vanishing B field, Friedan [3] showed that it obeys a renormalisation group equation
which may be written

λ
∂gi j

∂λ
= βi j(µg) = Ri j +O(µ2) (3.1)

where λ−1 is a short distance cut off. This equation links the renormalisation group to Ricci flow:
The one-loop renormalisation group flow for the nonlinear sigma model equals the Ricci flow on
the target manifold. Solutions to the Einstein’s equation are thus fixed points.

• The O(3) model: Σ2, T = S2, S =
∫

d2x(φ)ηab∂an̂∂bn̂ : n̂2 = 1

For this model, the finite action solutions are instantons [31] S2→ S2 classified by the second
homotopy group of S2.

• The O(n) model: Σd , i, j = 1, ...,n = dimT , S = µ
∫

ddxgi j(φ)∂
µφ i∂µφ j−V (φ)

The O(n) model is an effective field theory that encodes the pattern of symmetry breaking of
an O(N) classical Heisenberg model defined on a square lattice. This model has non trivial critical
behaviour in spite of µ being dimensionful. It has applications in solid state theory.

• The G/H coset models: Σd , T = G/H, G Lie group, G⊃ H.

These models arise in the scalar sector of supergravity theories [14]. As effective field theory
for scalars it has the advantage of avoiding relevant operators.

• General d-dimensional model. Σd , T , The number of supersymmetries dictate the
geometry of T .

The target space geometry of 4d models with one supersymmetry was first identified by Zu-
mino, [4] and extended to two supersymmetries in [5]. In 2d where the target space geometry can
have torsion (2,2) and (4,4) supersymmetry was discussed in [8] and (p,q) supersymmetry in [9].
The situation is summarised in the following tables
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d = 6 4 2 Geometry
N = 1 2 4 Hyperkähler
N = 1 2 Kähler
N = 1 Riemannian

Table 1:

Odd dimensions have the same structure as the even dimension lower. When we specialise
to two or six dimensions, we have the additional possibility of having independent left and right
supersymmetries.

In 2d with p = q:

Susy (1,1) (2,2) (2,2) (4,4) (4,4)
E=g+B g,B g g,B g g,B
Geometry Riemannian Kähler Bihermitean Hyperkähler Bihypercomplex

Table 2:

For the cases with p 6= q typically the geometry characterising the whole tangent bundle of T

is determined, as discussed in [9] and in, e.g., [16] and [27].

4. Supersymmetry

The relations in Tables 1 and 2 are most easily derived in superspace formulations of the
sigma models. The (2,2) geometry in 2d of follows from the dimensional reduction the N = 1 in
4d . Using Weyl spinors the 4d scalar superfields and covariant derivatives are the extensions to
superspace of the scalar fields and derivatives according to

φ(x)→ φ(x,θ , θ̄)

∂µ → (∂µ ,Dα , D̄α̇) , (4.1)

where θ α are anticommuting spinorial (odd) coordinates. The covariant derivatives obey

{Dα , D̄α̇}= 2i(σ µ)αα̇∂µ =: 2i∂αα̇ , (4.2)

and a scalar superfield has a finite expansion in the odd coordinates

φ
i = φ

i(x)+θ
α

ψα(x)+ ...+θ
α

θ̄
α̇vi

αα̇(x)+ .. . (4.3)

An irreducible representation of supersymmetry is obtained by imposing a chirality constraint:

D̄α̇φ = 0 , ⇒ φ = φ +θ
α

ψα +θ
α

θαF , (4.4)

reducing the multiplet to one complex scalar φ , one Weyl spinor ψα and one complex pseudo scalar
F in terms of Minkowski space fields. The expansion (4.4) has this simple form in a representation
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where D̄α̇ = ∂/∂ θ̄ α̇ but Dα is more complicated. A representation-independent way of defining
the component fields is

φ(x) = φ(x,θ , θ̄)| , ψα(x) = Dαφ(x,θ , θ̄)| , F (x) = 1
2 DαDαψα(x,θ , θ̄)| , (4.5)

where a vertical bar denotes setting the odd coordinates to zero. This also makes the derivation of
component actions easy.

5. Supersymmetric sigma model geometry

The most general superspace action for n chiral fields φ i, i = 1, ...,n is given by a real function
K and may be evaluated as

S =
∫

d4xD2D̄2K(φ , φ̄)| =
∫

d4x
{

Ki j̄∂µφ
i
∂

µ
φ̄

j̄ + ....
}

, (5.1)

where the term on the right only involves the lowest components of the superfield and the dots
denote supersymmetric completion. Comparing to the definition of a sigma model (2.2) we con-
clude that this is a supersymmetrisation of a model with a complex target space geometry where
the metric has a potential gi j̄ = ∂ 2K/∂φ i∂̄ φ j̄. This is Kähler geometry, the 4d Table 1 entry for
N = 1 and one of the 2d Table 2 entries for (2,2).

The (4,4) models in 2d are reductions of N = 2 models in 4d. For these, the action is as as
for the Kähler models above, but with extra, non-manifest supersymmetry:

δφ
i = D̄2(ε̄Ω̄

i) , δ φ̄
ī = D2(εΩ

ī) , (5.2)

where Ω = Ω(φ , φ̄). Its derivatives may be combined into [18]

J(1) =

(
0 Ωī

j

Ω̄i
j̄ 0

)
J(2) =

(
0 iΩī

j

−iΩ̄i
j̄ 0

)
(5.3)

which are considered together with the fundamental complex structure used to define φ and φ̄ as
complex

J(3) =

(
iδ i

j 0
0 −iδ ī

j̄

)
(5.4)

Invariance of the action under the transformations (5.2) as well as closure of the algebra will
follow iff the J(A)s are complex structures with J(A)J(B) = −δ AB + εABCJ(C), i.e., they satisfy an
SU(2) algebra. This is hyperkähler geometry, the 4d Table 1 entry for N = 2 and one of the 2d
Table 2 entries for (4,4).

5.1 4d models: Kähler and hyperkähler geometry

Symplectic manifolds with symmetries lend themselves to a reduction, or quotient, as de-
scribed in [19], [20]. The key issue here is to preserve properties such being symplectic. A Kähler
manifold is symplectic with extra structure, and so is its quotient provided that it is arrived at by
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gauging holomorphic Killing symmetries. This is the Kähler quotient which may be used to find
new Kähler spaces.

As we saw above, finding a new Kähler space is equivalent to finding a new Lagrangian K. To
find a new hyperkähler geometry starting from an old one, it is necessary to preserve much more
structure. For certain isometries, this can be done guided by the requirement that the extended
supersymmetry be preserved. In brief the recipe for this hyperkähler reduction is as follows [21],
[22]

• The starting point is a hyperkähler potential with triholomorphic isometries, i.e., isometries
that are holomorphic with respect to all three J(A)s.

• These isometries are gauged in preserving the supersymmetries, as described in [18].

• The resulting action is extremised with respect to the N = 2 multiplet of gauge fields. This
will result in a particular form of the vector potential plus certain constraints. This all deter-
mines the form of the extremised action as a N = 2 sigma model on the quotient space.

• From this action, we read off the resulting quotient metric and complex structure of the new
hyperkähler manifold.

The hyperkähler reduction is particularly useful since it gives a way of finding new hyperkähler
geometries which, unlike in the Kähler case, cannot be done simply by writing down a new action.1

5.2 2d models: Generalised Kähler geometry

As mentioned, some of the (2,2) and (4,4) models in 2d are dimensionally reduced 4d models.
However, there are new and interesting possibilities that arise in 2d.

Spinor and vector indices in 2d take on two values only, which we denote (+,−) and (++,=)

respectively. The (2,2) superspace thus has coordinates (x++,x=,θ+,θ−) and the (2,2) supersym-
metry algebra is

{D±, D̄±}= i∂
++
=
. (5.5)

The spinorial covariant derivatives D may be used to impose a number of covariant constraints on
the (2,2) superfields:

D̄±φ = 0 ,

D̄+χ = D−χ = 0 ,

D̄+`= 0 ,

D̄−r = 0 , (5.6)

along with their complex conjugates. These define Chiral φ̃ := (φ , φ̄), Twisted Chiral χ̃ := (χ, χ̄)

[8], Left semichiral L := (`, ¯̀) and Right semichiral R := (r, r̄) superfields [23]. A general (2,2)

1Technically, this is because there is no off shell (4,4) action formulation (not involving additional variables) avail-
able.

5



P
o
S
(
C
O
R
F
U
2
0
1
7
)
1
6
6

Uses of Sigma Models Ulf Lindström

action in 2d involves a function K:

S =
∫

d2xD+D̄+D−D̄−K(φ̃ , χ̃,L,R) (5.7)

For this function to describe a sigma model it has to involve an equal number of left and right
semichiral fields and satisfy some regularity conditions. The target space geometry may be de-
scribed as bihermitean geometry [8], (g,J(±),H) i.e., with a metric g hermitean with respect to two
complex structures J(±) covariantly constant with respect to connections with torsion determined
by a closed three form H. This is a special case of Generalised Complex Geometry [24], a geom-
etry defined on the sum of the tangent and cotangent bundles of a manifold. In this formulation,
bihermitean geometry corresponds to Generalised Kähler geometry [25]. In [26] it is shown that
the inclusion of semichiral fields in the function K in (5.7) gives a full description of Generalized
Kähler geometry, away from certain irregular points.

The function K(φ̃ , χ̃,L,R) has several additional roles discovered from the sigma model point
of view: It is is the superspace Lagrangian for a (2,2) sigma model with Generalized Kähler
target space geometry. It is also the generalized Kähler potential for the metric g and B-field.
These fields are determined as (non-linear) functions of the Hessian of K. In addition, K generates
symplectomorphisms between Darboux coordinates for J(+) and Darboux coordinates for J(−) [26].

5.3 2d models: hyperkähler geometry with torsion

5.3.1 (4,1) in (2,1) superspace

The 2d Table 2 does not contain the general (p,q) models introduced in [9], [15]. Some
of the geometry was extensively discussed in [16] and in (1,0) superspace in [27]. The number
of left and right supersymmetries, denoted (left,right)=(p,q), restrict the target space geometry
(g,H = dB,J(A), ...) to be (hyper)kähler with torsion (typically). As an illustration, we will describe
two recent discussions of (4,q) models [28], [29] .

The superspace is (2,1) superspace with supersymmetry algebra

{D+, D̄+}= i∂++ , D2
− = i∂= , (5.8)

and the action is

S =
∫

d2xd3
θ

(
kiD−ϕ

i + k̄īD−ϕ̄
ī
)
. (5.9)

The fields ϕ i, i = 1, ...,n are (2,1) chiral

D̄+ϕ
i = 0 , (5.10)

and ϕ̄ ī = (ϕ i)∗. The metric and B field are determined by the complex vector potentials as

gi j̄ = i(∂ik̄ j̄−∂ j̄ki)

B(2,0)
i j = i(∂ik j−∂ jki)

B = B(2,0)+B(0,2) (5.11)
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An ansatz for the nonmanifest (4,1) Susy is:

δϕ
i = ε̄

+D̄+Ω
i(ϕ, ϕ̄)

δ ϕ̄
ī = ε

+D+Ω̄
ī(ϕ, ϕ̄) (5.12)

This is formally the same ansatz as for the N = 2 models in 4d, given in (5.2), and leads to the
same set of complex structures (5.3), (5.4) forming an SU(2) algebra for the left sector, albeit the
complex structures are now covariantly constant with respect to the torsionful connection

Γ
(+) := Γ

(0)+ 1
2 g−1H , H = dB , (5.13)

with Γ(0) the Levi-Civita connection. The geometry is thus hyperkähler with torsion.
We can find an off-shell (4,1) multiplet that realises the geometry. The (4,1) algebra is

{D+a, D̄b
+}= 2iδ b

a ∂++ , a,b,= 1,2.

(D−)2 = i∂= . (5.14)

The (4,1) multiplets we study are ϕ i = (φ i,χ i) with

D̄1
+φ = 0 = D+2φ , D̄1

+χ = 0 = D+2χ ,

D̄2
+χ =−iD̄1

+φ̄ , D̄2
+φ = iD̄1

+χ̄ . (5.15)

These are off shell multiplets and give a geometry with

J(A) = I(A)⊗11n×n (5.16)

where

I(1) =

(
i11 0
0 −i11

)
, I(2) =

(
0 iσ2

iσ2 0

)
, I(3) =

(
0 −σ2

σ2 0

)
. (5.17)

with σ2 the second of the Pauli matrices.
The metric and torsion arise from an action. A convenient formulation is via projective super-

space, an extension of superspace by an additional coordinate ζ ∈ CP1, introduced for N = 2 in
4d in [30]. It may be adapted to the present case introducing

∇+ := D+1 +ζD+2 ,

∇̆+ := D̄1
+−ζ

−1D̄2
+ ,

η = ∑ηmζ
m , ∇+η = ∇̆+η = 0 , (5.18)

where η is called a projectively chiral superfield. As an invariant action we may take

S = i
∫

d2x
∮

C

dζ

2πiζ
D+D̄+D−

(
λi(η , η̆ ;ζ )D−η

i− λ̆i(η , η̆ ;ζ )D−η̆
i
)
. (5.19)
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For the multiplets introduced in (5.15) we have

η
i = φ̄

i +ζ χ
i

η̆
i = φ

i−ζ
−1

χ̄
i . (5.20)

From the action (5.19)we read off the one form potential

kφ i =−
∮

C

dζ

2πiζ
λ̆i , k̄φ̄ i =

∮
C

dζ

2πiζ
λi

kχ i =
∮

C

dζ

2πiζ
ζ λi , k̄χ̄ i =

∮
C

dζ

2πiζ
ζ
−1

λ̆i . (5.21)

Using these we may check that the geometry is indeed hyperkähler with torsion.

5.3.2 (4,0) in (2,0) superspace

Finally, we briefly comment on yet one more off shell model: An off shell realisation of a
(4,0) sigma model.

The (4,0) action in (2,0) superspace is

S =
∫

d2xd2
θ

(
ki∂=ϕ

i + k̄ī∂=ϕ̄
ī + eµνΛ

µ

−Λ
ν
−+Gµν̄Λ

µ

−Λ̄
ν̄
−+ eµ̄ ν̄ Λ̄

µ̄

−Λ̄
ν̄
−

)
,

The (2,0) chiral scalar and fermion superfields satisfy,

D̄+ϕ
i = 0 , D̄+Λ

µ

− = 0 .

The metric g and B field on the target space T are given in terms of the vector potentials as in
(5.11). The model is formulated on a bundle space with base T , with Gµν̄ a fibre metric and
eµν an antisymmetric field, both related to a bundle connection Ai

M
N . The conditions for (4,0)

supersymmetry include the existence of an SU(2) worth of complex structures on this bundle (as
well as on the base and fibre spaces). Again there is an off shell realisation of the geometry [29].

6. Closing comments

This brief presentation only touches on some of the areas where sigma models have found
applications. The format has made it necessary to focus on one particular aspect when going into
more detail; the target space geometry. Many other aspects are not treated, such as quantum as-
pects, T -duality, topological sigma models, the relation to string vacua, to gravity and supergravity
solutions and the precise relation to spin models. It is hoped, however, that it is conveyed that
Sigma Models are versatile tools that have a large number of uses.
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Commun. Math. Phys. 108, 535 (1987).
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