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1. Introduction

It is widely accepted that string theory features a landscape of consistent solutions to its equa-
tions of motion. Historically, such a landscape has emerged in two disguises. First, by studying
and partially classifying string compactifications to four dimensions with N=1 supersymmetry. Ex-
amples are covariant lattice constructions [1], Gepner type constructions [2, 3], Calabi-Yau com-
pactifications with line-bundles [4, 5] or intersecting D6-brane models [6, 7]. It became clear that
instead of a small set of such four-dimensional solutions, there exist a whole plethora of them. For
instance, in case of the covariant lattice construction estimates of the order O(101500) were given.

Each of these models comes with a number of still massless scalar and pseudo-scalar fields,
so that they do not correspond to isolated minima, but live in a higher dimensional moduli space.
The pseudo-scalar fields are also called axions and being CP-odd and obeying a perturbative shift
symmetry, they couple very differently than the scalars in the effective theory. The latter are also
called saxions and they are dangerous for the low-energy phenomenology as they can give rise
to (yet undetected) fifth forces and spoil the history of the early universe. Indeed, if the mass
of a scalar is below ∼ 30TeV, its gravitational decay will lead to a reheating temperature below
TBBN ∼ 1MeV, so that the moduli would decay after nucleosynthesis. This spoils the thermal
history of the early universe and is called the cosmological moduli problem. On the contrary, some
of the axions can stay very light with masses in the sub-meV regime and contribute to dark matter.

Therefore, eventually the scalar moduli should better be absent or should be stabilized by
some mechanism, respectively. There are essentially two working proposals how this could hap-
pen. Either non-perturbative effects generate an exponentially suppressed potential for the moduli
or they receive already a tree-level potential by turning on more general background fields, so called
fluxes. Concerning the latter mechanism, it was shown that type IIB orientifolds compactified on
Calabi-Yau threefolds show a discretuum of Minkowski minima [8] in the complex structure and
the axio-dilaton moduli. Here, except for the Kähler moduli, generally all minima are isolated and
simple estimates gave the (in-)famous number of 10500 vacua. This is the second way a landscape
arose in the history of string theory and it gave rise to the idea of a multiverse that possibly amelio-
rates some fine tuning problems, like the problem of the smallness of the cosmological constant in
our universe.

In view of this exponentially large number it was questioned whether string theory is able to
make any concrete predictions at all, as it appears that almost everything goes. However, that this
is not the case is clear at least for each type of concrete string construction. For instance, there
are strong tadpole constraints to hold that give an upper bound on the rank for the gauge group.
Moreover, the general experience is that whenever one hunts for a concrete model with certain
properties, the stringy constraints are severe and finding a model it is not trivial at all. For instance,
isolating a supersymmetric Madrid-type intersecting D6-brane model with three generations in the
Standard Model gauge group and massless hypercharge was challenging and only one in a billion
models satisfied these rough discrete constraints [6]. After all, effective four-dimensional models
that can be realized in string theory are guaranteed to have a consistent UV completion.

In the last years the opposite question was under scrutiny, namely whether string theory can in
principle be falsified. For that purpose, one takes the concrete model building obstacles seriously
and tries to formulate well motivated conjectures that distinguish effective field theories with a UV
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completion (the landscape) from those which do not admit it (the swampland). This logic can in
principle lead to statements like, ”the physical property A is in the swampland of effective field
theories derived from string theory”. In this case, if property A is experimentally measured in
our universe, then it cannot be described by an effective field theory arising from string theory.
Logically is not yet clear whether string theory is really falsified or our logic about effective field
theories does not apply. In any case, by better understanding properties that lie in the swampland
of effective field theories derived from string theory, we learn a lot on the underlying conceptual
principles of quantum gravity and string theory, respectively.

One potential candidate for such an enterprise arises in cosmology, namely large field infla-
tion. Interestingly triggered by the, at first misinterpreted, BICEP2 measurement of the cosmic
microwave background (CMB), during the last four years the community made a big effort in real-
izing large field inflation in string theory. Such models feature a tensor-to-scalar ratio in a regime
that can be measured with current or planed experiments. As we will briefly review, there exist
various proposals for getting a controllable model of string inflation. They all exploit the shift
symmetry of axions and can be divided into two classes. In the first class, the shift symmetry of the
axion is broken to a discrete one by non-perturbative effects. In the second class, a branch structure
arises, where each branch features a polynomial potential for the axion and the shift symmetry is
still present but shifts also the branch for the potential. In other words, by a choice of branch the
shift symmetry is spontaneously broken and the axion is not periodic any more. These models go
under the name of axion monodromy inflation [9, 10] (see [11, 12, 13] for field theory analogues).
The question arises is whether the large (trans-Planckian) field regime of such models is under
control in the string derived effective field theory.

In this talk, for a broader audience I will review recent attempts to clarify this issue. Method-
ologically, we will employ a combination of concrete string model building attempts and abstracted
swampland conjectures on UV complete quantum gravity derived effective field theories. In sec-
tion 2, a brief reminder of some basic notions of large single field inflation and also of quintessence
models is presented. In section 3, I review string theory proposals for the realization of axion in-
flation via non-perturbative effects and how they are bound to fail, if the Weak Gravity Conjecture
(WGC) holds. A second swampland conjecture on the validity of quantum gravity derived effective
field theories is introduces in section 4. This is called the Refined Swampland Distance Conjecture
(RSDC) and quantitative evidence for it is summarized, that arose from a detailed study of dis-
tances in concrete Calabi-Yau moduli spaces. In section 5, models of axion monodromy inflation
are introduced and after providing a concrete example it is argued that such models are challenged
by an axionic extension of the RSDC. Section 6 contains a few comments on how also models of
axionic quintessence face the same challenges. In section 7 we summarize a few more swampland
conjectures that have recently been proposed in the literature, the most dramatic one stating that
meta-stable de Sitter minima might also be in the swampland.
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2. Preliminaries

Not only provides it a natural theoretical explanation of the homogeneity and flatness prop-
erties of the observable universe, but there is now also mounting detailed experimental evidence
for the existence of an inflationary epoch in the early universe. In particular, the temperature fluc-
tuations in the CMB are predicted by such a scenario in an impressive manner. The combined
PLANCK 2015 and BICEP2/Keck Array results [14] confirm that these fluctuations are almost
scale invariant and Gaussian. Moreover, these measurements provide an upper bound to the tensor-
to-scalar ratio. For the corresponding parameters they find

• tensor-to-scalar ratio: r < 0.07

• spectral index: ns = 0.9667±0.004 and its running αs =−0.002±0.013

• amplitude of the scalar power spectrum P = (2.142±0.049) ·10−9 .

These findings are consistent with a simple model of inflation, namely that of a single slowly rolling
scalar field as shown in figure 2.
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Here ∆Θ denotes the distance in field space along which the inflaton rolls, i.e. where the slow-roll
conditions
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are satisfied. The measured parameter can be expressed in terms of the slow-roll parameters as

ns = 1+2η−6ε , r = 16ε , P =
H2

inf

8π2εM2
pl

(2.2)

where Hinf denotes the Hubble constant during inflation. Due to the Lyth bound [15]

∆Θ

Mpl
> O(1)

√
r

0.01
(2.3)

the distance in field space traversed during inflation is directly related to the tensor-to-scalar ratio.
Thus, if r is detected by the current experiments then theoretically a model of large field inflation
will be favored, i.e. ∆Θ > Mpl. Moreover, in this case the Hubble constant during inflation comes
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out as Hinf ∼ 1014 GeV. Via Vinf = 3M2
plH

2
inf one can infer that the inflationary mass scale is of the

order of the GUT scale

Minf = (Vinf)
1
4 ∼

( r
0.1

) 1
4 ×1.8 ·1016 GeV . (2.4)

The mass of the inflaton is given by M2
Θ
= 3ηM2

plH
2
inf and comes out as MΘ ∼ 1013 GeV. Thus, all

mass scales are close to the GUT scale and only one order of magnitude apart.
Recalling that inflation describes a period of a slowly rolling scalar field in the early universe

giving rise to an effective positive cosmological constant, it is tempting to speculate that also the
very tiny positive cosmological constant in our present universe can be originating via a similar
mechanism. This proposal goes under the name of quintessence [16] and conceptually it is very
similar to inflation, the main difference being that the mass scales of quintessence are much tinier.
The Hubble parameter today is of the order H ∼ 10−33 eV and the measured cosmological constant
is

Vquint = 10−120 M4
pl ∼

(
10−3 eV

)4
. (2.5)

Note that quite non-trivial, these two scales are consistent with the slow-roll expectation

Vquint ∼M2
pl H2 . (2.6)

The mass of the quintessence field is then of the order of the Hubble scale, thus very tiny with
respect to e.g. the heavy moduli masses that due to the cosmological moduli problem must be
larger than 30TeV. The equation of state is p = wρ where the parameter w has been measured by
the Planck satellite w = −1.006± 0.045. In the slow-roll regime, this is related to the slow-roll
parameter ε as

w∼ ε/3−1
ε/3+1

. (2.7)

The main issue with such slow-rolling models of inflation (or quintessence) is that they are
very sensitive to corrections to the scalar potential of the inflaton. In particular, one expects that
the effective field theory model has to be embedded into a UV complete theory of quantum gravity.
In such a theory, like string theory, one expects corrections by Planck-suppressed operators of the
form (Θ/Mpl)

n. However, for large field inflation, such corrections are substantial and will change
the potential in an uncontrolled way, as shown in figure 2.

Θ

V

Mpl

|
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For models of quintessence, one has to control the Planck suppressed corrections to the mass of the
scalar up to order n = 6 in

∆M2 ∼M2
susy

(Msusy

Mpl

)n
(2.8)

for a supersymmetry breaking scale Msusy = 1TeV. Higher scales of supersymmetry breaking imply
the control of even higher orders.

In order to make progress, one really has to discuss these issues in an understood UV complete
theory of quantum gravity. In particular, one has to study whether one can identify mechanisms to
control Planck suppressed operators. As usual such mechanism will be related to symmetries that
will be broken in a controlled way. Natural candidates are the shift symmetry of axions that can be
broken by non-perturbative corrections. Let us discuss how this can in principle be realized in the
context of string theory compactifications.

3. Natural inflation and the weak gravity conjecture

As mentioned in the introduction, to protect the potential from receiving Planck suppressed
corrections, one can employ the shift symmetry of axions. Such four-dimensional axions arise
naturally in string compactifications by either directly resulting from ten-dimensional axion-like
fields, like the NS-NS and R-R p-forms. In addition, at special points in the moduli space of e.g.
the complex structure moduli space, accidental shift symmetries of some of the scalar fields can
arise. For instance, around the large complex structure point of a Calabi-Yau (CY) moduli space,
the Kähler potential takes the form

K =− log
(

iκ i jk(Ui−U i)(U j−U j)(Uk−Uk)+ . . .
)

(3.1)

where κ i jk denote the triple intersection numbers of the mirror dual CY threefold. This Kähler
potential is shift symmetric in the real part of the complex structure moduli Ui. This shift symmetry
is broken by higher order terms, that correspond to world-sheet instanton corrections on the mirror
dual side.

The simplest class of models assumes that, after stabilizing all heavy moduli except the lightest
axion θ , the continuous shift symmetry of the latter is broken to a discrete one by a non-perturbative
correction to the potential. Thus, the effective Lagrangian takes the form

L = f 2(∂θ)2 +Λ(1− cosθ) (3.2)

where f is the axion decay constant and Λ ∼ exp(−Sinst) the size of the (leading order) non-
perturbative instanton correction. Here we have chosen natural units where Mpl = 1. Note that
one has assumed that Sinst > 1 so that higher order instanton corrections can be neglected. More-
over, from the string theory point of view, we have implicitly assumed that moduli stabilization can
be achieved such that at the end one gets a Minkowski minimum at θ = 0. Whether this is possible
in string theory is a not yet completely settled issue, as in most concrete cases AdS-minima seem
to be preferred and one needs to rely on the existence of some sort of uplift mechanism. More on
this will be mentioned in section 5.
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However, this is not the point here, as already the Lagrangian (3.2) has an inherent problem in
the large field regime. To see this let us first transform it to a canonically normalized kinetic term.
With Θ = f θ we get

L = (∂Θ)2 +Λ

(
1− cos

(
Θ

f

))
. (3.3)

In the regime Θ/ f � 1 this potential reduces to the one of chaotic inflation V ∼ ΛΘ2/ f 2, which
gives rise to large field inflation with ∆Θ∼ 10 and r ∼ 0.2. Therefore also f has to be larger than
one. This field theory model is called natural inflation [17]. Now in string theory, the (pseudo-
scalar) axion is combined with a scalar φ (also called saxion) to a complex field T = θ + iφ and
the parameters in (3.2) are given by

f =
1
φ
, Sinst = φ (3.4)

up to numerical factors of order one1. Thus, for this string derived effective action, one has the
relation

f Sinst ∼ 1 . (3.5)

As a consequence, the large field regime Θ > 1 (presuming f > 1) requires that the instanton
action is smaller than one, spoiling the validity of the instanton expansion. Therefore, the large
field regime lies outside the regime of validity of the pre-assumed effective action. The same logic
also applies if one wants to interprete the axion Θ as a quintessence field.

Of course this is a just a simple example, but it has been conjectured that the reason behind this
failure is a property of any consistent theory of quantum gravity. Namely, as argued in [18, 19, 20]
the relation (3.5) is just the generalization of the so-called Weak Gravity Conjecture (WGC) [21],
to more general p-forms (here 0-form). The WGC is formulated for a Maxwell theory with gauge
coupling g coupled to gravity and it says that gravity must be the weakest force, i.e. for a U(1)
gauge theory there must exist a particle of mass m and charge q such that m ≤ gqMpl. Arguments
in favor of this conjecture have been given in [21], some of them being:

• The WGC guarantees that any non-BPS subextremal charged black hole with M ≥ Q can
decay.

• It is satisfied for perturbative states in toroidal heterotic string theory compactifications.

• It has a magnetic version Λ < gMpl relating the cut-off of the theory. This can be derived
by requiring that a magnetic monopole is not a black-hole. It implies that the g→ 0 limit
is dramatic so that one cannot simply generate a continuous global symmetry from a gauge
symmetry2.

1The first relation can be seen as a consequence of a Kähler potential of the type (3.1). Indeed the Kähler potential
K =−3log(−i(T −T )) implies for the metric GT T = ∂T ∂T K = 3

4φ 2 .
2It is expected that quantum gravity theories do not admit continuous global symmetries.
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Via T-duality it has been argued that there should exist such a relation for any p-form gauge field
[18, 19, 20]. For a 0-form with

m→ Sinst gq→ 1/ f (3.6)

one precisely arrives at (3.5)

f Sinst ≤ 1 (3.7)

where we have set Mpl = 1. It is beyond the scope of this article to discuss this in detail, but let
us mention that there exist proposals to generalize the WGC to multiple U(1) gauge factors3 [22]
leading to strong constraints also for inflationary models invoking multiple axion fields [23, 24].

The lesson is that guided by string theory experience and arguments from black hole physics,
one has arrived at a general conjecture discriminating in simple terms effective field theories that
admit a consistent UV completion (the landscape) from those that do not (the swampland). In the
here derived context one can say that the WGC conjecture forbids consistent effective field theory
models of natural inflation.

More generally, whenever one claims to have found a working 4D effective field model of
large (single) field inflation derived from string theory, one really has to ensure that in particular
the pre-assumed hierarchy of mass scales

Mpl > Ms > MKK > Mmod > Hinf > MΘ (3.8)

is satisfied. Clearly, for working in an effective 4D field theory for discussing moduli stabilization,
all final masses of the former moduli have to be lighter than the Kaluza-Klein and the string scale.
Moreover, for having a model of single field inflation the masses of all heavy moduli (excluding
potentially very light sub-meV axions) have to be larger than the Hubble scale during inflation. It is
important to emphasize that the realization of this hierarchy in a final minimum is not yet sufficient,
it really has to hold throughout the entire slow rolling phase.

Before we discuss the second approach of realizing axion inflation, namely axion monodromy,
we spend some time on discussing a second conjecture for discriminating the landscape from the
swampland.

4. The Swampland Distance Conjecture

In 2006 Ooguri and Vafa had already proposed more conjectures of this type [26]. The most
quantitative one has meanwhile been termed the Swampland Distance Conjecture (SDC). The in-
spiration for it comes from a simple dimensional reduction of Einstein gravity on a circle. Choosing
the ansatz for a 5D metric

GMNdXMdXN = gµν(x)dxµdxν + r(x)2dy2 (4.1)

3A generalization to include also scalar fields was proposed in [25].
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leads to an effective action for the modulus field r(x)

S =
∫

d4x
√

g
1

(λ r)2 ∂µr ∂
µr (4.2)

where λ denotes a numerical constant. Note that this is the same form of the metric on moduli
space as already encountered in (3.4), where however here it is the kinetic term for a saxionic field
r(x) and not an axion. It followed that the canonically normalized field ρ(x) is

ρ = λ
−1 logr (4.3)

which scales logarithmically with r. The mass of Kaluza-Klein modes along the circle are therefore
given as

MKK ∼
n
r
∼ ne−λρ (4.4)

Thus, for ρ > ρc = λ−1 infinitely many states become exponentially light indicating a breakdown of
the effective action that has only kept the massless four-dimensional metric and the radial modulus4.

Motivated by this and similar observations, Ooguri/Vafa proposed that this behavior is a gen-
eral property of any effective theory derived from string theory (quantum gravity).

Swampland Distance Conjecture:

For any point p0 in the continuous scalar moduli space of a consistent quantum gravity theory,
there exist other points p at arbitrarily large distance. As the distance d(p0, p) diverges, an infinite
tower of states exponentially light in the distance appears, i.e. the mass scale of the tower varies as

m∼ m0 e−λd(p0,p) . (4.5)

Therefore, beyond the critical distance dc = λ−1 the effective field theory breaks down.

Let us make a few comments:
• The distance is measured by the metric on the moduli space and is given by the length of the

shortest geodesic.

• The conjecture is about the flat moduli space of a compactification, in which axionic fields
are compact. Thus, the directions in which arbitrarily large distances appear involve saxionic
directions.

• The original SDC conjecture makes no reference to the value of the critical distance dc = λ−1

beyond which the effective field theory breaks down.

• Note that the SDC describes a property of models in the landscape!

If one uses the Kähler potential (3.1), one would find λ =
√

2/3Mpl where we have reintro-
duced the Planck scale. This and similar results for simple models of axion monodromy inflation
[29, 30] led Kläwer/Palti [31] to go one step further and conjecture that the critical distance is al-
ways of the order of the natural built in mass scale, namely λ =αMpl, where α is a number of order
one. Adding this extra piece to the SDC was termed the Refined Swampland Distance Conjecture
(RSDC). Its relation to models of axion monodromy inflation will be discussed in section 5.

4In [27, 28] it was shown that integrating out an infinite tower of exponentially light states is closely related to the
appearance of infinite distances in field space.
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Testing the RSDC on Calabi-Yau moduli spaces

In [32] this RSDC conjecture was challenged by a detailed computation of distances in the
Kähler moduli space of Calabi-Yau compactifications (see also [33, 34]). These Kähler moduli
spaces do not only contain (geometric) regions/phases, where points at infinite distance exist, but
also non-geometric phases, like the Landau-Ginzburg (LG) phase. These often do only have a finite
radius and therefore do not admit points at infinite distance. To reach the latter one first has to cross
the non-geometric phase and move to another geometric phase where such a point do exist.

If the distances one can travel along geodesics in such non-geometric phases were already
larger than Mpl, it would directly falsify the RSDC 5. Let us explain this potential challenge for the
concrete example of the Kähler moduli space of the quintic, which looks like as shown in figure
1. There is only a single complexified Kähler modulus t = B+ iJ. As indicated, there are three

-1.0 -0.8 -0.6 -0.4 -0.2

0.5

1.0

1.5

2.0

2.5

Re(t)

Im(t)

large

volume

LG
•

conifold•

Figure 1: Sketch of the Kähler moduli space of the quintic.

distinguished points: the large volume point, the conifold and the Landau-Ginzburg (LG) point.
The LG or Gepner point is the one of minimal radius. To cover the whole moduli space, one needs
at least two charts, whose radii of convergence are shown by the dashed arc. Now one can ask
the question whether the RSDC still holds for points p0 in the small volume regime. Following a
geodesic from the LG point to the large volume regime, one expects that the proper field distance
depends on Im t like shown in figure 2.

As long as one stays in the small volume regime the proper field distance scales polynomially with
Im t and at some point (Im t0,Θ0) the logarithmic scaling becomes dominant. As a consequence,
we define the critical field distance as the sum

Θc = Θ0 +λ
−1 , (4.6)

5Similar in spirit, in [35] axion decay constants have been evaluated in the geometric phases for h11 ∈ {1,2} CY
threefolds. Is was found that they are bounded from above by an order one parameter times the Planck-scale.
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Figure 2: Expected relation between proper field distance Θ and Im t.

which includes the distance Θ0. Clearly, if Θ0 determined in this way was already much larger than
the Planck-scale, the RSDC would be falsified. Said the other way around, if the RSDC is correct,
the proper field distance that can be traveled in the small volume regime must be smaller than Mpl.

Following this idea, using two different methods to determine the Kähler potential on the
Kähler moduli space, in [32] the following two tasks were treated:

• Compute the periods and Kähler potential in non-geometric phases (LG and hybrid) of CY
manifolds with h11 ∈ {1,2,101}

• Compute the critical distances λ and Θ0 for various geodesics in these highly curved moduli
spaces .

For the quintic, the Kähler potential in the large volume regime takes the familiar form

K =− log
(

i(t− t)3 +C+O(e−2πt) . . .
)

(4.7)

whereas in the Landau-Ginzburg phase we obtain (ψ = |ψ|exp(iθ) and |ψ|< 1)

K =− log
(

α |ψ|2 +β |ψ|4 + γ |ψ|6 +δ |ψ|7 cos(5θ)+ . . .
)
. (4.8)

Note that both expressions feature a shift symmetry for the leading order terms, namely in Re(t)
and Argψ , that are broken by higher order corrections. The resulting Kähler metric as a function
of ψ is shown in figure 3. Note that the variable t and ψ are related via the mirror map.
The bisectrix is indeed a geodesic for which we obtain

Θ
LG
0 = 0.43 , Θλ = λ

−1 =
√

3
4

(4.9)

in accordance with the RSDC. This ist just the simplest example that has been computed in [32].
There, many more tests have been made for other Calabi-Yau threefolds and more general geodesics.
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ψ

Figure 3: Kähler metric for the quintic.

The findings can be summarized by saying that in all examples one obtains Θ0 < 1 and λ−1 < 1.
Moreover, studying the recently determined 204 periods of the quintic [36], it was observed that
the distances in the LG phase become an order 10−2 smaller than in the one-dimensional Kähler
moduli space of the quintic. Thus, it is compelling to propose the scaling relation〈

Θ0

phase

〉
·#(phases)< Mpl (4.10)

for the average distance that can be traversed in a non-geometric phase. Then, even crossing more
non-geometric phases before reaching the large volume phase does not help in collecting an overall
distance that is much larger than one. If true, this would be a compelling piece of evidence for the
RSDC.

5. Axion monodromy inflation

Let us come back to the question of generating a potential for the initially shift symmetric
axion. As opposed to taking non-perturbative effects into account, that are there once the classical
string background is specified, one can also add new classical ingredients. In the pioneering work
[9, 10] these were D-branes, whose backreaction on the geometry were inducing a non-trivial
potential for the axion (this arose from the Kalb-Ramond field contribution to the Dirac-Born-
Infeld action SDBI =

∫
dpx
√

G+B ).

F-term axion monodromy

An alternative mechanism was proposed in [37, 38, 39], namely that the same type of fluxes
that one introduces for moduli stabilization already induces a potential for the axion. This can be
seen from the dimensional reduction of the kinetic terms of the R-R forms in the ten-dimensional
effective supergravity action

S10 =
∫

d10xGp∧?Gp (5.1)

with

Gp = Fp−H3∧Cp−3 +F ∧ eB (5.2)
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where Fp = dCp−1, H = dB2 and F denotes a formal sum of all R-R field strengths Fp. Note that
the fluxes Fp and H are closed and therefore take values in H p(M,Z). Moreover, the dimensionally
reduced higher gauge fields Cp and B give rise to axions θ in four-dimensions. For instance, in
type IIA, the axions

∫
Σ
(i)
2

B appear in the complexified Kähler moduli T (i) =
∫

Σ
(i)
2

B+ i
∫

Σ
(i)
2

J. Since
the the gauge fields appear explicitly in Gp, the dimensional reduction of the kinetic terms (5.1)
directly lead to a scalar potential for axions.

Motivated by the earlier field theory proposals by [11, 12, 13], it was explicitly shown in [40]
(see also the review [41]) that the resulting scalar potential takes a very peculiar form, namely it
can be expressed in terms of 4D space-time filling four-forms coupled to the axions

S4 =
∫

d4x
(
−Zab(φ)Fa

4 ∧?Fb
4 +2Fa

4 ρ(θ)
)
+ . . . . (5.3)

Here Zab(φ) depends only on the saxionic fields φ and ρ(θ) depends on the axionic fields and
the fluxes turned on. Integrating out the 4D three-forms in Fa

4 = dCa and choosing the integration
constant to be vanishing, one arrives at the scalar potential

V =
(
Z−1(φ)

)ab
ρa(θ)ρb(θ) , (5.4)

that nicely separates the dependence on the saxions and the axions. To illustrate what is going here,
let us consider a simplified field theory model, where the Lagrangian of a single axion θ coupled
to a three-form gauge field reads

L =− f 2dθ ∧?dθ −F4∧?F4 +2F4(mθ + f0) . (5.5)

As we have seen, in string theory f0 and m can be thought of as quantized background fluxes.
There, the axion decay constant f will also be (saxionic) moduli dependent. The resulting equation
of motion for C3 takes the simple form

d ?F4 = d(mθ + f0) ⇒ ?F4 = f0 +mθ (5.6)

where the integration constant was set to zero. Introducing this back into the action leads to an
effective potential

V = ( f0 +mθ)2 . (5.7)

We observe that the scalar potential and F4 are invariant under the extended shift symmetry

θ → θ − c/m f0→ f0 + c . (5.8)

Therefore, the system still preserves the shift symmetry, that is broken spontaneously by a choice
of branch f0,m. Moreover, the shift symmetry and the gauge symmetry of C3 strongly constrain
higher order corrections. They must be functions of F4, i.e.

δV ∼∑(F4)
2n ∼∑(V0)

n (5.9)

so that even in the trans-Planckian regime δθ � 1, as long as δV � 1 one controls the expansion.
In other words, this way of breaking the shift symmetry (on a branch) is not generic but of a special
kind that still allows to control the Planck suppressed operators.
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Inflation

Using these flux induced potentials for an axion to realize inflation goes under the name of
axion monodromy inflation. On a fixed branch the scalar potential increases by a certain amount
when one traverses over one period of the former shift symmetric axion. Compared to the models
of natural inflation the range of the axion θ is now disentangled from the axion decay constant
(depending on the saxions) so that the WGC conjecture does not provide any direct constraint on
the field range of the axion.

The question is whether there exist other problems of controlling the effective field theory
along a trajectory that involves trans-Planckian field ranges for the axion. First, one realizes that in
full examples the issue of axion inflation cannot be disentangled from the issue of moduli stabiliza-
tion. It is the same flux induced potential that is responsible for both. Therefore, one has to make
sure that the fluxes can be turned on in such a way, as to allow that the lightest (heavy) modulus is
an axion (see e.g. [42]). This would then be the candidate for the inflaton. Since the axion/inflaton
receives its small mass from a tree-level effect, it is unnatural to expect that moduli getting their
mass from a non-perturbative effect come out more massive than the inflaton. In other words, all
other heavy moduli should better also be stabilized by tree-level fluxes.

Let us assume that using a 4D low-energy effective action, one has stabilized all moduli, so that
a canonically normalized axion Θ is the lightest one with mass MΘ and all the remaining moduli
have a higher mass MΘ�Mheavy�MKK. For inflation, the axion gets displaced from its minimum
and, as mentioned already before, along the entire slow rolling phase the hierarchy (3.8) must be
intact. However, when θ is displaced from its minimum, generically the minima of the saxions will
also change,

r(θ) = r0 +δ r(θ) (5.10)

where r0 denotes the vacuum expectation value of the scalar r at the minimum of the potential, i.e.
when θ is also at its minimum. By plugging this back into the effective theory, the scalar potential
and the kinetic term for the inflaton can be substantially modified. In other words, the inflationary
trajectory is no longer only along θ but corresponds to a combination of θ and r. It has been
pointed out in [43] that this backreaction leads to a flattening of the inflaton potential.

Studying concrete examples, in [29, 30] it was realized that the displacement of the saxions
will generically backreact on the kinetic metric of the inflaton leading at best to a logarithmic
behavior of the proper field distance at large field. More concretely,

Θ =
∫ √

Kθθ (s) dθ ∼
∫ 1

r(θ)
∼ 1

λ
log(θ) (5.11)

where we have used that K ∼− log(r) with r being the saxionic partner of the inflaton, and that for
large field excursions δ r(θ) ' λθ (which was found for concrete examples). In (5.11), Θ is the
canonically normalized inflaton field. This behavior is reminiscent of the logarithmic scaling in the
SDC (4.3), with the difference that now we are dealing with axions that are not flat directions but
are moving in a potential. As in the SDC, the mass of Kaluza-Klein modes scales exponentially
with the field excursion of the axion

MKK ∼
n
r
∼ n

λ
e−λρ . (5.12)
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Whether trans-Planckian field ranges in Θ are under control now depends on the value of λ . In
concrete examples this is related to the ratio of light to heavy moduli masses.

λ =

(
MΘ

Mheavy

)p

(5.13)

where values p = 1/2,1 have been found in concrete models. Therefore a mass hierarchy be-
tween the inflaton and the saxionic moduli can help to delay the backreaction effects which are
not anymore tied to the Planck mass in an obvious way. To have parametrical control over this
mass hierarchy, requires the minimum of the potential to satisfy the following condition [42, 44]:
Θc = λ−1 will be tuneable if one can parametrically set the inflaton mass to zero without desta-
bilizing the other scalars. In order to see whether this is possible in (quasi-) realistic set-ups, we
consider a simple example from [45], that realizes many of the ingredients that we need.

An example with a D-brane modulus

We consider the so-called type IIB STU-model extended by a complex open string modulus Φ

that parametrizes the transversal deformation of a D7-brane. Such a model has also been studied in
[46]. We work in the framework of effective four-dimensional N = 1 supergravity, where all string
and Kaluza-Klein modes have been integrated out. The four complexified moduli are

S = c+ is , T = ρ + iτ , U = v+ iu , Φ = θ + iϕ (5.14)

where the real parts are axion-like scalars. At large values of the saxions (s,τ,u), the Kähler
potential is given at leading order as

K =−3log(−i(T −T ))−2log(−i(U−U))− log
[
−(S−S)(U−U)+ 1

2(Φ−Φ)2] . (5.15)

Now we turn on fluxes to generate the superpotential

W = f0−3f2U2 +hSU +qT U +µ Φ
2 (5.16)

where the fluxes are considered to be integers. This model is of the flux-scaling type discussed
in [47, 48]. In type IIB the term involving the Kähler modulus T is generated by a so-called
non-geometric Q-flux. This flux breaks the no-scale structure that is present for q = 0 and which
was the starting point for the KKLT and the LVS scenario of Kähler moduli stabilization via non-
perturbative effects. As mentioned, as we want to identify the real part of Φ with the inflation,
stabilizing the Kähler modulus in the latter non-perturbative way would lead to the wrong mass
hierarchy.

The Kähler- and the superpotential data specify the supergravity model and one can compute
the scalar potential. It admits an analytically solvable non-supersymmetric tachyon-free AdS min-
imum at

s0 =
2

7
4 ·3 1

2

5
1
4

(f0 f2)
1
2

h
, τ0 =

5
3
4 ·3 1

2

2
1
4

(f0 f2)
1
2

q
, u0 =

1

10
1
4 ·3 1

2

(
f0
f2

) 1
2

ϕ0 = 0 , v0 = hc0 +qρ0 = θ0 = 0 ,

(5.17)
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leaving one axionic direction unconstrained. The value of the scalar potential in the AdS minimum
is

V0 =−
1

120 ·3 1
2 ·10

1
4

hq3

f
3
2
0 f

1
2
2

. (5.18)

For realizing inflation, one now needs to make the assumption that this minimum can be up-
lifted to Minkowski, i.e. V0 = 0, without destabilizing the moduli and only slightly changing their
vacuum expectation values. For recent critical discussions on the existence of bona-fide de Sitter
vacua in string theory and the consistency of up-lift mechanisms please consult [49, 50]. To this
discussion one can add another argument supporting the claim that the correct description of an
uplift by an D3-brane placed in a highly warped throat is not yet fully understood. In most cases,
one simply adds to the supergravity generated scalar potential an uplift term

V =VSUGRA +Vup =VSUGRA +
ε

τ2 (5.19)

with ε � 1 in the strongly warped region. However, the complex structure modulus Z governing
how close one is to a conifold singularity also needs to be stabilized before. It was shown in [51]
that the self-consistency of the used supergravity action requires that the physical volume of the
corresponding 3-cycle A must still be larger than one, i.e.

Vol(A) = V
1
2

∫
A

Ω3 = (|Z|2 V )
1
2 > 1 (5.20)

so that one stays in the dilute flux limit. Here V is the total volume of the CY threefold. This
means that the strongly warped region is outside the validity of the used supergravity effective
action. Therefore, the ansatz (5.19) for the total scalar potential is highly questionable. We note
that for the upcoming discussion of the backreaction, the existence of an uplift is not really relevant.

Now coming back to our example, the mass-matrix has the eigenvalues6

M2
closed = νi

hq3

f
3
2
0 f

1
2
2

(5.21)

with ν ∈ {0,0.0001,0.0019,0.0029,0.0117,0.0162} and

M2
φ ' 0.002

hq3

f
3
2
0 f

1
2
2

, M2
θ ' 0.021

µ q3

f
3
2
0 f

1
2
2

. (5.22)

Therefore, the open string axion Θ can be parametrically lighter than all the other massive moduli,
indeed

Mheavy

MΘ

∼

√
h
µ
= λ

−1 . (5.23)

From the former discussion, one expects that λ =
√

µ/h is the flux dependent parameter that
controls the backreaction of the inflaton onto the other moduli. Let us analyze this in more detail

6Introducing back factors of Mpl we note that |V0| ∼M2
heavy M2

pl.
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under the assumption λ � 1. Up to subleading corrections of order O(λ 2), the conditions for the
backreacted minima can be solved

s0(θ)∼
2

7
4 3

1
2

5
1
4

(f0 +µθ 2)
1
2 f

1
2
2

h
, τ0(θ)∼

5
3
4 3

1
2

2
1
4

(f0 +µθ 2)
1
2 f

1
2
2

q

u0(θ)∼
1

10
1
4 3

1
2

(
f0 +µθ 2

f2

) 1
2

(5.24)

with all other fields sitting in their minimum at zero. Thus, the critical value of θ where the

backreaction becomes significant is θc =
√

f0
µ

. The kinetic term for the inflaton becomes

L ax
kin = K

ΦΦ
∂µθ∂

µ
θ =

1
8

√
5
2

h
f0 +µθ 2 (∂θ)2 (5.25)

so that the critical value for the canonically normalized inflaton field Θ is

Θc = γ

√
h
f0

θc = γ

√
h
µ
= γλ

−1 (5.26)

with γ = 1
2

(5
2

) 1
4 = 0.63. Therefore, from this perspective, for λ � 1 and Θ�Θc the backreaction

can be neglected and one gets a polynomial effective potential for the inflaton (after adding a
constant uplift). Thus, it seems that by parametrically choosing Θc ∼ λ−1 > 10 one can achieve a
stringy model featuring large field inflation7.

Beyond the critical value, the kinetic term for the inflaton takes the form

L ax
kin =

1
8

√
5
2

h
µ

(
∂θ

θ

)2
(5.27)

so that the canonically normalized inflaton shows the logarithmic behavior

Θ = Θc log
(

θ

θc

)
' 1

λ
logθ '

Mheavy

MΘ

logθ . (5.28)

This is familiar from the RSDC. The difference is that here it is an axionic field that can go to large
distances and that the parameter λ−1 ∼

√
h
µ

can be parametrically larger than one so that trans-

Planckian distances seem to be controlled. The reason behind it is that for λ−1� 1 the inflationary
trajectory goes mostly in the axionic direction with only a slight movement in the (dangerous)
saxionic directions

However, we have only analyzed one aspect of the quantum gravity embedding of trans-
Planckian axionic field directions. Since we have more mass scales in the problem like the hi-
erarchy between the heavy moduli masses and the Kaluza-Klein mass scale, other issues might
occur. To see what happens let us compute the various mass scales, like string scale, Kaluza-Klein
scales, heavy moduli masses and the inflaton mass. Since we are heading for systematic effects,

7This is consistent with the observation already made in [46] for a more complicated, only numerically treatable
open string model (without non-geometric fluxes).
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we will not be concerned with model dependent numerical prefactors, but will focus on desired
mass hierarchies that are guaranteed or spoiled parametrically. The relevant masses scale in the
following way with the fluxes (recall that we set Mpl = 1): The string scale is

M2
s ∼

1

τ
3
2 s

1
2
∼ h

1
2 q

3
2

f0 f2
. (5.29)

Moreover, considering our model as being realized on the isotropic T 6, we now have two Kaluza-
Klein scales for u > 1, yielding a heavy and a light Kaluza-Klein mass

M2
KK ∼

1
τ2 u±1 =⇒ M2

KK,h ∼
q2

f
1
2
0 f

3
2
2

, M2
KK,l ∼

q2

f
3
2
0 f

1
2
2

. (5.30)

Recall that the mass of the heavy moduli and the inflaton scaled as

M2
heavy ∼

hq3

f
3
2
0 f

1
2
2

, M2
Θ ∼

µ q3

f
3
2
0 f

1
2
2

. (5.31)

We can also evaluate the various mass-scales in the large field regime. Due to (5.24), this means
that we just have to change

f0→ f0

(
θ

θc

)2

→ f0 exp
(

2
Θ

Θc

)
(5.32)

so that the various mass scales become

M2
i = M2

i

∣∣
0 exp

(
−µi

Θ

Θc

)
. (5.33)

with the integer coefficient µs = 2,µKK,h = 1,µKK,l = µheavy = µΘ = 3. Note that all these mass
scales become exponentially light for large Θ. We observe that the quotient of the light KK-mass
and the heavy moduli mass is constant along the trajectory8

M2
KK,l

M2
mod
∼ 1

hq
. (5.34)

Now, for quantized fluxes, one can only tune λ−1 ∼
√

h
µ

large by choosing a large flux parameter

h� µ . However, in this regime parametrically one gets M2
KK,l�M2

mod so that the light KK modes
become lighter than the moduli masses, thus spoiling the use of the low energy effective super-
gravity action. Note that we are not talking here about model dependent numerical coefficient, but
about the parametrical dependence and this goes in the wrong direction and makes trans-Planckian
field ranges of Θ at least unnatural.

Thus, in this concrete (admittedly not completely perfect) string motivated model, we found
evidence that the distance in proper field space Θ, where the logarithmic behavior sets in, is around

8For the flux supported AdS vacuum, the curvature radius of the AdS space is given by LAdS ∼Mpl/V
1
2

0 ∼M−1
heavy.

Therefore for the ratio of the length scales LAdS/LKK,l ∼ MKK,l/Mheavy one finds the same ratio of mass scales as in
(5.34). This means that parametrically the initial AdS minimum does not allow a clear separation of the length scales of
the compact and the non-compact space.
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the Planck-scale and cannot be much increased without invalidating the effective theory. Of course
this is just a single example but a similar behavior has been found in all of the models studied in
[45, 47]. There, e.g. for the KKLT and LVS type models from [52], another issue was observed
namely that for the anti D3-brane uplifted models the backreacted valley along which inflation is
supposed to happen destabilizes at around the scale Θc. This behavior is shown in figure 4.

logτ

V

Θ
Θc

Figure 4: A backreacted trajectory that destabilizes at Θc. τ denotes a saxionic field.

All these findings point towards the axionic extension of the RSDC that says: Even for axion mon-
odromy models with potentially infinite distances in axionic directions, the validity of the effective
field theory breaks down for field excursions of the order of the Planck-scale.

As we have seen, the validity of this conjecture is closely related to the possibility to stabilize
the moduli such that a single axion is parametrically lighter than all the other moduli. Note that
here one is not dealing with geodesic distances in a moduli space, but with actual trajectories in a
field space with a scalar potential. Thus, one has two competing effects and the true trajectory will
be somewhere between a geodesic and a valley in the potential. Since the axionic RSDC conjecture
is a very general and very strong statement, more evidence is needed to support it or to disprove it
by a convincing counter-example. In the moment we can say that so far no fully compelling string
model of axion monodromy inflation has been worked out that admits controllable trans-Planckian
field ranges. If the axionic RSDC is correct one gets a picture like shown in the figure 5.

Θ
Θc

V (Θ)

Polynomial
inflation

sub Planckian
due to RSDC

Starobinsky-like inflation

Invalidity of EFT
due to SDC

Figure 5: Large field inflation EFTs derived from UV completion.
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Therefore, all these developments could culminate in a no-go theorem of the type: In string theory
(quantum gravity) it is impossible to achieve a parametrically controllable effective field theory
model of large (single) field inflation. The tensor-to-scalar ratio is thus bounded from above by
r / 10−3. If true, it offers an experimentally testable way to falsify string theory. However, it could
also be that the highly non-trivial axionic extension of the RSDC is biased by the examples one has
studied so far. More work is needed to settle this important question.

6. Comments on quintessence

As we mentioned in section 2, the mass scales appearing in quintessence models are extremely
tiny

H ∼MΘ ∼ 10−33 eV , Vquint ∼ (10−3 eV)4 (6.1)

and therefore Planck-suppressed operators are even more dangerous to destroy the control over the
slow-roll regime. If the quintessence field is a saxion then there is no mechanisms to control the
dangerous Planck suppressed operators and during the rolling some of the coupling constants could
be time dependent. Moreover, there is the general concern of a long range fifth force.

Thus, again one is led to axionic fields with an initial shift symmetry to realize quintessence
(see [53, 54]). For such models with a potential V (Θ) ∼ Θp the slow-roll conditions are met for
Θ� pMpl/

√
2. From the measured value of the parameter in the equation of state w =−1.006±

0.045, one can infer that 2.8pMpl / Θ < ∞. Moreover, the number of e-foldings up to the present
time is of order one, as Ne ∼ Ht0 ∼ 1. Therefore, depending on the values of w and p, one could
stay closer to Planck-size field excursion than for large field inflation9.

For models with a non-perturbatively generated periodic potential, one faces the same problem
as for inflation. In the trans-Planckian regime one still needs f > 1 and a very small exp(−Sinst)

factor, which is not consistent with the WGC. For models of axion monodromy, even though the
distance the field has to roll is smaller than for inflation, one still has to work in the (close to)
trans-Planckian regime. The main challenge though is that in a full string theory setup one needs
to stabilize the moduli such that the mass of the axionic quintessence field is by many orders
of magnitude smaller than the heavy saxionic moduli masses. Due to the cosmological moduli
problem these must satisfy Mheavy > 30 TeV so that

λ ∼ MΘ

Mheavy
∼ 10−45 . (6.2)

For the previously discussed concrete example this involves huge fluxes that are certainly not con-
sistent with tadpole cancellation and the hierarchy between the moduli and the KK-masses. In more
general words, the axionic RSDC will also impose very strong constraints for axionic models of
quintessence to be realizable in effective theories derived from string theory. Therefore, effective
axionic quintessence models might be in the swampland, as well.

9I thank Nemanja Kaloper for pointing this out.
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7. Outlook

In the moment, we are witnessing a paradigm shift in the development of string theory or
better string phenomenology where people take the message from string model building obstacles
seriously and make an effort to extract general conceptual rules that govern any theory of quantum
gravity. Here, besides general arguments based on black holes, string theory provides an important
source of insight as it is a theory of quantum gravity that methodologically and technically is quite
well understood. However, behind all its technical ingredients it seems to hide some basic princi-
ples of quantum gravity. As we have reviewed, once these more general principles are revealed,
they could potentially lead to no-go theorems that in principle allow one to experimentally falsify
string theory.

In this article we were mostly concerned with a UV completion of models of large field infla-
tion with a measurable tensor-to-scalar ratio. The arguments follow the logic that the interesting
parametric region for realizing it lies out of control of the effective action one is using. This is not a
full no-go theorem, as it might only indicate that one is using an unsuitable framework and should
better use the full string theory without referring to an effective action. Of course, how this can be
done in practice is unexplored.

Finally, let us also mention two more conjectures discriminating properties of the string land-
scape from those of the swampland. For more details we refer to the original literature. In [55] it
has been proposed that the equal sign in the WGC is only for BPS states and that as a consequence
every (flux supported) non-supersymmetric AdS vacuum is (non-perturbatively) unstable. This has
immediate consequences for non-supersymmetric AdS-CFT duality, as on the field theory side a
finite life-time sets a scale and therefore violates the conformal symmetry.

Maybe even more drastic, in [56] a potential conjecture was mentioned that claims that meta-
stable de Sitter vacua are also in the swampland of string theory. This was also argued for in
[50] where a critical look on existing attempts to construct dS vacua was given. Such a no-go
theorem would imply that our universe cannot be in a meta-stable state but must have some still
rolling scalar fields. This is reminiscent of models of quintessence. As we have just mentioned,
if the conjectured axionic RSDC indeed holds, string derived effective models of this type will be
plagued with the same kind of control issues as large field inflationary models10. Admittedly, the
axionic RSDC is not fully established yet and is motivated by considering a few examples. More
work is needed to see whether our intuition is maybe misguided by the lamppost we were looking
under.

Acknowledgments: It is pleasure to thank Cesar Damian, Anamaria Font, Michael Fuchs, Daniela
Herschmann, Daniel Kläwer, Erik Plauschinn, Lorenz Schlechter, Yuta Sekiguchi, Rui Sun, Irene
Valenzuela and Florian Wolf for collaboration on the topics reviewed in this article. I also thank
Eran Palti for enlightening discussions.

10As an analogy let us mention that by analyzing the question of the (non-)existence of an S-matrix [57], it was found
that rolling eternal quintessence models behave analogously to de Sitter vacua
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