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1. Introduction

The Unruh effect [1] is one of the most important achievements of Quantum Field Theory
(QFT) in curved backgrounds. Since its discovery, it was clear that a direct evidence of this phe-
nomenon would have required a tremendous effort, due to the difficulty in detecting the Unruh
temperature

TU =
h̄a

2π ckB
, (1.1)

which appears to be extremely small even for huge accelerations a.
Even though actual experiments cannot provide a satisfactory outcome, from the theoretical

point of view the Unruh effect turns out be indispensable to maintain the internal consistency of
QFT. Its existence, indeed, was found to be mandatory first for clarifying the apparently contro-
versial problem of the QED bremsstrahlung [2], and then for preserving the equality of the inverse
β decay rates of accelerated proton in the inertial and comoving frames [3], thus guaranteeing the
general covariance of the underlying theoretical framework.

An interesting development along this line was provided by the analysis of the inverse β decay
in the presence of neutrino mixing [4, 5, 6]. This subject was firstly addressed in Ref. [4], where
the authors find a discrepancy between the two decay rates, concluding that the problem must be
solved experimentally. However, in Ref. [5], it was shown this contradiction is connected with
the incorrect choice of neutrino mass eigenstates as asymptotic states in the comoving frame1: if
one instead adopts flavor eigenstates, the two decay rates perfectly agree [5], at least within the
approximation in which such states are described by the usual Pontecorvo ones [9].

Subsequently, another work dealing with this problem appeared [6], in which the authors con-
clude that no contradiction arises at all in connection with neutrino mixing. In their derivation, they
claim that flavor states can only be defined “phenomenologically” [10]: in this way, their calcula-
tion basically reduces to the one of Ref. [11], since they use neutrinos with definite masses in the
weak interaction vertices. It is clear, however, that a problem of exquisitely theoretical nature, such
as the possible violation of general covariance and/or thermality of Unruh effect, cannot be cor-
rectly addressed without using a formalism fully consistent with the general theoretical framework
for that phenomenon, namely the Standard Model.

Actually, the construction of flavor states for mixed particles has been carried out in a series
of papers [12, 13, 14], where they have been rigorously defined as eigenstates of the flavor charge
operators, obtained as usual via Noether’s theorem:

Q` =
∫

d3x ν̄`(x)ν`(x), `= e,µ, (1.2)

Q`|0(θ)〉e,µ = 0, Q`|νk,`〉= |νk,`〉, Q`|ν̄k,`〉=−|ν̄k,`〉. (1.3)

Here θ is the mixing angle and |0(θ)〉e,µ is the vacuum for definite flavor fields. The key point
is that the transformation connecting neutrino annihilation operators with definite flavors to those

1The authors of Ref. [4] motivate this choice by the requirement of KMS thermal condition for the accelerated
neutrino vacuum. However, in Ref. [7], it has been shown that the thermality of Unruh radiation for mixed fields is not
violated, at least within the first order approximation we deal with in Ref. [5]. Furthermore, it has been recently pointed
out that the KMS condition is not necessary at all for the Unruh effect to be present in QFT [8].
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with definite masses is not simply a rotation, but contains a Bogoliubov transformation [15]. A
consequence of this fact is that flavor and mass representations are unitarily inequivalent in the
infinite volume limit:

lim
V→∞

1,2〈0|0(θ)〉e,µ = 0, (1.4)

where |0〉1,2 is the vacuum for free fields ν1, ν2 with mass m1, m2. Oscillation formulas derived
within this formalism [16] exhibit corrections with respect to the usual ones [9] but, in the relativis-
tic limit, Pontecorvo formulas and states are shown to be approximately recovered.

In this paper, we present the main points of the analysis of the inverse β decay with neutrino
mixing, as given in Ref. [5]. It is important to stress that the use made there of Pontecorvo states
instead of the exact neutrino flavor states Eq. (1.3) is justified by the fact that calculations of Ref. [5]
are performed in an approximation such that the result is insensitive to the choice between these
two sets of states (see Appendix for more details).

Here, for simplicity we work in a two-dimensional spacetime and in natural units h̄ = c = 1,
with the metric signature ηµν = diag(+1,−1).

2. Evaluation of the inverse β decay rate

In this Section we investigate the decay of accelerated protons. Following Ref. [3], calculations
will be performed both in the inertial and comoving frame.

In the approximation of small acceleration a�MW± ,MZ0 , by defining the Hermitian monopole
q̂(τ) as in Ref. [17], the vector current describing the uniformly accelerated nucleons can be written
as

Ĵµ = q̂(τ)uµδ
(
u−a−1) , (2.1)

where u= a−1 = const is the spatial Rindler coordinate representing the world line of nucleons with
proper acceleration a, τ = v/a is the proper time and v is the Rindler time coordinate. The nucleons’
four velocity uµ is defined by uµ = (a,0) and uµ = (

√
a2t2 +1,at) in Rindler and Minkowski

coordinates, respectively2.
Using Fermi theory, we can express the coupling of the electron Ψ̂e and neutrino Ψ̂ν fields to

the hadronic current Ĵµ as follows

ŜI =
∫

d2x
√
−gĴµ

(
Ψ̂νeγ

µ
Ψ̂e + Ψ̂eγ

µ
Ψ̂νe

)
, (2.2)

where g is the determinant of the metric and γµ are the gamma matrices in the Dirac representa-
tion [18].

2.1 Inertial frame

In the inertial frame, the accelerated proton decays into a neutron by emitting a positron and
a neutrino, as shown in Fig. 1. Denoting by me(ν) the mass of the electron (neutrino) field and

by ke(ν), ωe(ν) =
√

m2
e(ν)+ k2

e(ν), σe(ν) the momentum, frequency and polarization of the modes in

2 The Rindler coordinates (v,u) are related with the Minkowski coordinates (t,z) by: t = usinhv, z = ucoshv.
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Figure 1: Proton decay in the inertial frame.

Minkowski space, respectively, the tree-level transition amplitude for the decay process takes the
form

A p→n
in ≡ 〈n|⊗

〈
e+keσe

,νkν σν

∣∣∣ ŜI |0〉⊗ |p〉 =
GF

2π
Iσν σe(ων ,ωe), (2.3)

where we used the standard expansion of Dirac fields in Minkowski space [3] and we introduced
the shorthand notation

Iσν σe(ων ,ωe) ≡
∫ +∞

−∞

dτ ei[∆mτ+a−1(ωe+ων )sinhaτ−a−1(ke+kν )coshaτ]

×
[
coshaτ g(+ων )†

kν σν
g(−ωe)
−ke−σe

+ sinhaτ ḡ(+ων )
kν σν

γ
3 g(−ωe)
−ke−σe

]
. (2.4)

Here, g(±ω)
kσ

are the Dirac modes in Minkowski space up to the exponential factor e(∓ωt+kz)/
√

2π [3]
and ∆m is the difference of the nucleon masses.

The differential and total transition rates are defined as

d2P p→n
in

dkνdke
= ∑

σν=±
∑

σe=±

∣∣A p→n
in

∣∣2 , Γ
p→n
in = P p→n

in /T, (2.5)

where T =
∫ +∞

−∞
ds is the nucleon proper time. The calculation of Γ

p→n
in gives

Γ
p→n
in =

4G2
F

aπ2 eπ∆m/a

∫
∞

0
dke

∫
∞

0
dkν

{
K2i∆m/a

[
2
(

Ω

a

)]
+

memν

ωeων

Re
{

K2i∆m/a+2

[
2
(

Ω

a

)]}}
.

(2.6)
where Ω ≡ ωe +ων . Details can be found in Refs. [5, 11] for a more general four-dimensional
treatment.

2.2 Comoving frame

Let us now analyze the proton decay in the comoving frame. In this case, the process is
allowed by the absorption (emission) of e− and ν̄e (e+ and νe) from (to) the Unruh thermal bath [1].
Formally, the evaluation of the transition rate can be performed in the same way as the inertial
frame. In this case, however, the relevant processes are those shown in Fig. 2.
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Figure 2: Proton decay in the comoving frame.

We begin by considering the process (i). Using the standard Rindler expansion for fields in a
uniformly accelerated frame [3], a straightforward calculation gives

A p→n
(i) ≡ 〈n|⊗ 〈νων σν

|ŜI |e−ωe− σe−
〉⊗ |p〉 = GF

a
Jσν σe(ων ,ωe), (2.7)

where ŜI is the Fermi action Eq. (2.2) with γµ replaced by the Rindler gamma matrices γ
µ

R =

(ea)
µ

γa, (ea)
µ being the tetrads, and

Jσν σe(ων ,ωe) =
∫ +∞

−∞

dvei[∆m+ων−ωe]v/a h(mν )†
ων σν

h(me)
ωeσe . (2.8)

Here, we denoted by h(m)
ωσ the Rindler modes up to the exponential factor e−iωv/a [3].

Since the probability that the proton absorbs (emits) a particle from (to) the Unruh thermal bath
is nF(ω) = 1

1+e2πω/a (1−nF(ω)) [1], the differential transition rate for the process (i) becomes

1
T

d2P p→n
(i)

dωνdωe
=

1
T ∑

σν ,σe

∣∣∣A p→n
(i)

∣∣∣2 nF(ωe)[1−nF(ων)]. (2.9)

Analogous calculations for the processes (ii) and (iii) lead to the following total decay rate:

Γ
p→n
acc ≡ Γ

p→n
(i) +Γ

p→n
(ii) +Γ

p→n
(iii) =

4G2
F mν me

π3a2eπ∆m/a

∫ +∞

−∞

dωe R2(ωe), (2.10)

where
R(ωe) ≡ Re

[
Ki(ωe−∆m)/a−1/2(mν/a)Kiωe/a+1/2(me/a)

]
. (2.11)

As in the inertial case, the explicit derivation of Γ
p→n
acc is rather awkward (see Refs. [5, 11] for

details). The crucial point, however, is that the decay rates in the two frames perfectly agree with
each other.

3. Inverse β decay with mixed neutrinos

In the previous Section, we have considered electron neutrino as a fundamental field, acting
on |νe〉 as a free-field like operator. In the Standard Model (SM), however, it is well-known that
neutrinos interact weakly with other particles in flavor eigenstates |ν`〉 (` = e,µ) that are coherent

4
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superpositions of mass eigenstates3 |νi〉 (i = 1,2). The relation between these two sets of states is
given by (

|νe〉P
|νµ〉P

)
= U(θ)

(
|ν1〉
|ν2〉

)
≡

(
cosθ sinθ

−sinθ cosθ

)(
|ν1〉
|ν2〉

)
, (3.1)

where U(θ) is the Pontecorvo unitary mixing matrix [9]. We have introduced a subscript P to
distinguish the Pontecorvo flavor states above defined from the ones mentioned in the Introduction,
which are the eigenstates of flavor charge (see also Appendix).

Let us then analyze how calculations of previous Section merge with Pontecorvo transforma-
tion Eq. (3.1).

3.1 Inertial frame

We start by rotating both neutrino fields and states in Eq. (2.3) according to Eq. (3.1), obtaining

A p→n
in =

GF

2π

[
cos2

θ Iσσe(ων1 ,ωe)+ sin2
θ Iσσe(ων2 ,ωe)

]
, (3.2)

where Iσσe(ων j ,ωe), j = 1,2, is defined as in Eq. (2.4) for each of the two mass eigenstates. Using
Eq. (2.5), we then obtain the following expression for the total decay rate Γ

p→n
in :

Γ
p→n
in = cos4

θ Γ
p→n
1 + sin4

θ Γ
p→n
2 + cos2

θ sin2
θ Γ

p→n
12 , (3.3)

with the simplified notation

Γ
p→n
j ≡ 1

T ∑
σ ,σe

GF
2

4π2

∫ +∞

−∞

dk
∫ +∞

−∞

dke |Iσσe(ων j ,ωe)|2, j = 1,2, (3.4)

Γ
p→n
12 ≡ 1

T ∑
σ ,σe

GF
2

4π2

∫ +∞

−∞

dk
∫ +∞

−∞

dke [Iσσe(ων1 ,ωe)Iσσe(ων2 ,ωe)
∗ + c.c.] . (3.5)

It is worth to note that, whilst the integrals Γ
p→n
j ( j = 1,2) can be solved analytically [3], the

treatment of the off-diagonal term Γ
p→n
12 is absolutely non-trivial. A thorough analysis is discussed

in Ref. [5].
We remark that the above off-diagonal term is completely absent in the analysis of Ref. [6],

which is based on a phenomenological definition of flavor states [10]. Neverthless, in Refs. [10],
it is also argued that flavor states can be defined in the relativistic limit. Thus, one expects that the
outcome of Ref. [6] – which is claimed to be exact – would reproduce our approximate result in
the relativistic limit (where Pontecorvo states are known to be well-defined and indeed describe the
phenomenology of observed neutrino oscillations) and for small neutrino mass difference. How-
ever, as remarked, this does not happen.

3.2 Comoving frame

Let us now turn the attention to the comoving frame. As it has been shown in Ref. [5], assum-
ing asymptotic neutrinos to be mass eigenstates would inevitably lead to a disagreement between

3For the sake of simplicity, we consider a two flavor model.
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the decay rates in two frames – a result that is incompatible with the general covariance of the
underlying formalism.

Letting ourselves be guided by the lighthouse of the general covariance, we require the asymp-
totic neutrino states in the comoving frame to be flavor eigenstates (see footnote 1 for a discussion
about the approach of Ref. [4] to this point). By referring to the process (i) in Fig. (2), the transition
amplitude Eq. (2.7) becomes

A p→n
(i) =

GF

a

[
cos2

θJ
(1)

σσe(ω,ωe) + sin2
θJ

(2)
σσe(ω,ωe)

]
, (3.6)

where J
( j)

σσe(ω,ωe) ( j = 1,2) is defined as in Eq. (2.8) for each of the two neutrino mass eigen-
states. Analogous considerations for the processes (ii) and (iii) finally lead to the following ex-
pression for the total transition rate:

Γ
p→n
acc ≡ Γ

p→n
(i) + Γ

p→n
(ii) + Γ

p→n
(iii) = cos4

θ Γ̃
p→n
1 + sin4

θ Γ̃
p→n
2 + cos2

θ sin2
θ Γ̃

p→n
12 , (3.7)

where Γ̃
p→n
j ( j = 1,2) is defined as

Γ̃
p→n
j ≡

4G2
Fmemν j

π3a2eπ∆m/a

∫ +∞

−∞

dωe R2
j(ωe), j = 1,2, (3.8)

and

Γ̃
p→n
12 =

8G2
Fme
√mν1mν2

π3a2eπ∆m/a

∫ +∞

−∞

dωe R1(ωe)R2(ωe). (3.9)

By comparing Eqs. (3.3), (3.7) and exploiting the following equality [3]

Γ
p→n
j = Γ̃

p→n
j j = 1,2, (3.10)

we thus realize that the inertial and comoving results would match, provided that the off-diagonal
terms Γ

p→n
12 (Eq. (3.5)) and Γ̃

p→n
12 (Eq. (3.9)) coincide. It is quite difficult to draw a final conclusion

at this stage. From a preliminary analysis carried out in the limit of small neutrino mass difference
δm
mν1
� 1 [5], however, it has been shown that Γ

p→n
12 = Γ̃

p→n
12 to the leading order in δm

mν1
. Asserting

whether this equality holds exactly is not a foregone conclusion, thus leaving the problem of the
inverse β decay in the context of mixing open even when taking neutrino asymptotic states to be
flavor eigenstates. A detailed discussion of this issue is addressed in the last Section.

4. Comments and Conclusions

In this paper we have analyzed the rôle of neutrino mixing in the context of the inverse β

decay of accelerated protons. Working in the approximation of small neutrino mass difference, we
have shown that, in order for the two decay rates to coincide (and thus general covariance to hold),
asymptotic neutrino states must be taken as flavor eigenstates rather than mass eigenstates. In our
calculations, we have employed the usual Pontecorvo states, since, in the considered limit, they
well approximate the exact expression of flavor eigenstates Eq. (1.3) (see also Appendix).

Further investigation is inevitably required for the understanding of what happens beyond such
an approximation. In view of this, two paths need to be considered. On the one hand, one may

6
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attempt to keep on using Pontecorvo states. In this case, however, we suspect that the contradic-
tion would not be solved, since Pontecorvo transformations Eq. (3.1) are not consistent with the
Quantum Field Theory formalism [12]. On the other hand, the adoption of exact neutrino flavor
states Eq. (1.3) shall be pursued. Nevertheless, also in this scenario two possibilities should be
contemplated. If the two decay rates coincide, then the discrepancy arising in Ref. [4] would be
solved at a purely theoretical level. Instead, if the contradiction remains, one could envisage two
potential sources of the problem (or combination thereof):

1. Neutrino mixing in the context of the Standard Model is at odds with general covariance;

2. Unruh effect should be somehow modified when neutrino mixing is taken into account (for
example, violating the thermality of vacuum state [7]).

It is an interesting question, and object of future work, to investigate in detail where the source
of the inconsistency resides. In line with Refs. [7], however, we tend to regard the second option
as the correct one.

Appendix

In this Appendix we first review some elements of the quantization of mixed neutrino fields
and then we show that the use of Pontecorvo states in Ref. [5] is justified within the approximations
there used, i.e. small neutrino mass difference and vanishing neutrino mass.

The vacuum for definite flavor neutrinos |0〉e,µ is expressed in terms of the vacuum for definite
mass neutrinos |0〉1,2 by [12]

|0〉e,µ = ∏
k,σ

[(
1− sin2

θ |Vk|2
)
− ε

σ sinθ cosθVk (Aσ

k +Bσ

k )

+ε
σ sin2

θ (U∗k Cσ

k −Uk Dσ

k )+ sin2
θ |Vk|2 Aσ

k Bσ

k

]
|0〉1,2 , (1)

where εσ = (−1)σ and

Aσ

k ≡ bσ †
k,1 dσ †

−k,2, Bσ

k ≡ bσ †
k,2 dσ †

−k,1, Cσ

k ≡ bσ †
k,1 dσ †

−k,1, Dσ

k ≡ bσ †
k,2 dσ †

−k,2, (2)

with bσ

k, j (d
σ

k, j), j = 1,2 being the annihilators for neutrinos (antineutrinos) of mass m j, momentum
k and polarization σ . These operators are related to the corresponding annihilators and creators for
neutrinos with definite flavor according to

bσ

k,e = cosθ bσ

k,1 + sinθ

(
U∗k bσ

k,2 + ε
σ Vk dσ †

−k,2

)
, bσ

k,e|0〉e,µ = 0, (3)

and similar for the other operators. The above relation is the combination of a rotation and a
Bogoliubov transformation. The Bogoliubov coefficients are defined as

Uk = uσ †
k,2 uσ

k,1 = vσ †
−k,1vσ

−k,2, Vk = ε
σ uσ †

k,1 vσ

−k,2 =−ε
σ uσ †

k,2 vσ

−k,1, (4)

7
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where uσ

k,i (vσ

−k,i) are the field modes for fermions (antifermions). By explicit calculation, it is
possible to show that4 [12]

Uk = |Uk| ei(ων2−ων1 )t , Vk = |Vk| ei(ων2+ων1 )t , (5)

|Uk| =
(

ων1 +m1

2ων1

) 1
2
(

ων2 +m2

2ων2

) 1
2
(

1+
k2

(ων1 +m1)(ων2 +m2)

)
, (6)

|Vk| =
(

ων1 +m1

2ων1

) 1
2
(

ων2 +m2

2ων2

) 1
2
(

k
(ων2 +m2)

− k
(ων1 +m1)

)
, (7)

with

|Uk|2 + |Vk|2 = 1. (8)

Now, the one electron neutrino state is given by

|νσ

k,e〉 ≡ bσ †
k,e |0〉e,µ . (9)

Note that, in the calculations of the decay rate in the inertial frame Eq. (3.3), the following contri-
butions concerning the neutrino sector appear in the form (integration omitted) [5]

|P〈νe|Ψ̂νe |0〉1,2|2 = cos4
θ + sin4

θ +2cos2
θ sin2

θ |Ukν
| (10)

where |νe〉P is the Pontecorvo state introduced in Eq. (3.1).
In the approximation of Ref. [5], we have

|Ukν
| ≈ 1− δm2

8k2
ν

+O(δm4). (11)

To the leading order, we then obtain

|P〈νe|Ψ̂νe |0〉1,2|2 ≈ 1, (12)

that is the same result we would obtain using the exact neutrino flavor state Eq. (9) and the flavor
vacuum Eq. (1) instead of Pontecorvo states and mass vacuum, thus justifying the employment of
the Pontecorvo states in our calculations.
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