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We establish the precise connection between the theoretical T, CP, CPT asymmetries, in terms
of transition probabilities between the neutral meson Bd states, and the experimental asymme-
tries, in terms of the double decay rate intensities for Flavour-CP eigenstate decay products in
a B-Factory of entangled states. Genuine asymmetry parameters in the time distribution of the
asymmetries are identified and their measurability analysed, disentangling genuine and possible
fake terms. The nine asymmetry parameters – three different observables for each one of the
three symmetries – are expressed in terms of the ingredients of the Weisskopf-Wigner dynami-
cal description of the entangled Bd-meson states and we obtain a global fit to their values from
the BaBar Collaboration experimental results. The possible fake terms are all compatible with
zero. The information content of the nine asymmetry parameters is indeed different. The non-
vanishing ∆S T

c = −0.687± 0.020 and ∆S CP
c = −0.680± 0.021 are impressive separate direct

evidence of Time-Reversal-Violation and CP-Violation in these transitions (and compatible with
Standard Model expectations). A 2σ effect for the Re(θ ) parameter responsible of CPT-Violation
appears; interpreted as an upper limit, it leads to |MB̄0B̄0 −MB0B0 | < 4.0× 10−5 eV at 95% C.L.
for the diagonal flavour terms of the mass matrix. Finally, we consider scenarios where, in the
presence of quantum gravity fluctuations (space-time foam), the CPT operator may be ill-defined.
Its perturbative treatment leads to a modification of the Einstein-Podolsky-Rosen correlation of
the neutral meson system by adding an Entanglement-weakening term of the wrong exchange
symmetry, the ω-effect. The analysis is extended to identify how to probe the complex ω when
the connection between the Intensities for the two time-ordered decays ( f ,g) and (g, f ) is lost
( f flavour and g CP eigenstate decay channels), and how the ω-effect is disentangled from CPT
violation in the evolution Hamiltonian.
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1. Introduction

The BaBar Collaboration demonstrated direct evidence of Time Reversal Violation in the time
evolution of the B0

d–B̄0
d meson system [1], independent of CP Violation or CPT Invariance. The

result does not dependent on a particular dynamical description of the B0
d–B̄0

d system: it is estab-
lished in terms of asymmetries of observable transition rates. The essential quantum mechanical
ingredients involved are (i) the entanglement of the B0

d–B̄0
d pair in a B-Factory before the first decay,

(ii) the use of decays as filtering measurements to (a) prepare the initial, and (b) detection the final,
B meson states participating in the transition, (iii) the time dependence of the double decay rates.
The concept behind this approach originates in [2,3] while the application to an actual experimental
analysis was addressed in [4], avoiding, in particular, the need of the T-reversal of the decay (since,
as emphasized by L.Wolfenstein [5], the T-reverse of a decaying state is not a physical state). The
considered transitions are between Flavour and CP eigenstate decay products. Orthogonality be-
tween the meson states filtered by both types of decay products (the Flavour and CP “Tags” [6]),
is well defined under certain conditions [4, 7, 8]; this opens the possibility of constructing Gen-
uine Asymmetries without contaminating fake terms. The eight different Flavour � CP transitions
provide separate and independent asymmetries for the T, CP and CPT transformations. Our main
objectives are [9]: (1) provide the precise connection between theoretical asymmetries (in terms
of transition probabilities for the meson states), and experimental asymmetries (in terms of double
decay intensities), giving genuine asymmetry parameters for model-independent T, CP, CPT time
dependent asymmetries; (2) analysing these asymmetry parameters within the Weisskopf-Wigner
Approach (WWA) [10,11] for the description of the dynamics/time evolution of the B0

d–B̄0
d system.

In the following, we recall some generalities of the B0
d–B̄0

d effective hamiltonian, the evolution of
the initial entangled state and the double decay rate intensities. In section 3, the conditions for the
channels used in the Babar analysis of [1] to be truly appropriate for time reversal genuine asym-
metries are addressed. Section 4 analyses the experimental asymmetries of [1] in detail, focusing
on the connection with section 2. The reconstruction of complete genuine asymmetries beyond the
BaBar ratios is shown in section 5. The contamination of genuine T and CPT asymmetries from
deviations in the conditions discussed in section 3 is discussed and quantified in section 6. A sum-
mary of the most relevant results from a global fit to the Babar data is included in 7. Section 8 is
devoted to a condensed discussion of the sensitivity to the ω-effect and to present selected results
derived when the previous analysis is extended through the inclusion of ω .

2. Entanglement, Time evolution and double decay rates

The effective Hamiltonian for the two meson system B0
d–B̄0

d is Ĥ = M̂− iΓ̂/2 with M̂ and
Γ̂ 2× 2 hermitian matrices, respectively the hermitian and the antihermitian parts of Ĥ. In the
notation of [12] the eigenvalues and eigenvectors are

µH,L = MH,L−
i
2

ΓH,L; Ĥ|BH〉= µH |BH〉; |BH〉= pH |B0
d〉+qH |B̄0

d〉; (2.1)

Ĥ|BL〉= µL|BL〉; |BL〉= pL|B0
d〉−qL|B̄0

d〉. (2.2)
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In general, with Ĥ not a normal operator, [M̂, Γ̂] 6= 0: then, the states (2.1) and (2.2) are not orthog-
onal. The averages and differences of masses and widths1 are more convenient to use:

µ =
MH +ML

2
− i

2
ΓH +ΓL

2
≡M− i

2
Γ, (2.3)

∆µ = MH −ML−
i
2

(ΓH −ΓL)≡ ∆M− i
2

∆Γ, (2.4)

together with the complex parameters θ and q/p:

qH

pH
=

q
p

√
1+θ

1−θ
,

qL

pL
=

q
p

√
1−θ

1+θ
, (2.5)

and with

δ =
1−|q/p|2

1+ |q/p|2
. (2.6)

From Ĥ, θ = (Ĥ22−Ĥ11)/∆µ , (q/p)2 = Ĥ21/Ĥ12; θ is a CP and CPT violating complex parameter;
δ violates CP and T. Interestingly, Ĥ can be written in terms of physical parameters [13] (except
for the phase of q/p, which is convention dependent),

Ĥ =

(
µ− ∆µ

2 θ
p
q

∆µ

2

√
1−θ 2

q
p

∆µ

2

√
1−θ 2 µ + ∆µ

2 θ

)
. (2.7)

In a B factory, operating at the ϒ(4S) peak, the initial two-meson state is EPR [14] entangled,

|Ψ0〉=
1√
2

(
|B0

d〉|B̄0
d〉− |B̄0

d〉|B0
d〉
)

=
1√

2(pLqH + pHqL)

(
|BL〉|BH〉− |BH〉|BL〉

)
, (2.8)

which retains its entangled antisymmetric character in terms of Ĥ eigenstates. For the decay of the
first state into | f 〉 at time t0, and then the second state into |g〉 at time t + t0, the transition amplitude
is

〈 f , t0;g, t + t0|T |Ψ0〉=
e−i(µH+µL)t0

√
2(pLqH + pHqL)

(
e−iµH tA L

f A H
g − e−iµLtA H

f A L
g

)
, (2.9)

with A H,L
f ≡ 〈 f |T |BH,L〉 the decay amplitudes of the eigenstates into the final state f . The double

decay rate I( f ,g; t) is obtained squaring, and integrating over t0:

I( f ,g; t) =
e−Γ t

4Γ|pLqH + pHqL|2
∣∣∣ei∆M t/2e∆Γ t/4A H

f A L
g − e−i∆M t/2e−∆Γ t/4A L

f A H
g

∣∣∣2 . (2.10)

Equation (2.10) makes transparent the following expected symmetry property: up to the global
exponential decay factor e−Γ t , the combined transformations t →−t and f � g give the identity.
Expansion of the t dependence with the approximation ∆Γ = 0, (valid for the B0

d states) gives

I( f ,g; t) = e−Γ t 〈Γ f 〉〈Γg〉
Γ

{
Ch[ f ,g]+Cc[ f ,g]cos(∆M t)+Sc[ f ,g]sin(∆M t)

}
, (2.11)

1Subindices “H” and “L” label the “heavy” and “light” states, then ∆M > 0 and the sign of ∆Γ is not a matter of
convention, it is not fixed.
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with 〈Γ f 〉 defined after eq. (2.13). Therefore, with the initial entangled state in eq. (2.8) and the
evolution in eq. (2.9), the following symmetry properties follow:

Ch[ f ,g] = Ch[g, f ], Cc[ f ,g] = Cc[g, f ], Sc[ f ,g] =−Sc[g, f ]. (2.12)

They are central in assessing the independent observables present in the Babar measurements. For
the expressions to follow in the next sections, we define as usual the parameters of mixing times
decay amplitudes

λ f ≡
q
p

Ā f

A f
, C f ≡

1−
∣∣λ f
∣∣2

1+
∣∣λ f
∣∣2 , S f ≡

2Im(λ f )

1+
∣∣λ f
∣∣2 , R f ≡

2Re(λ f )

1+
∣∣λ f
∣∣2 , (2.13)

where 〈 f |T |B0
d〉 ≡ A f , 〈 f |T |B̄0

d〉 ≡ Ā f and 〈Γ f 〉 = 1
2(|A f |2 + |Ā f |2). Furthermore, for flavour spe-

cific channels f = `±+X ( f = `± for short in the following), and assuming no wrong lepton charge
sign decays, C`± = ±1, R`± = S`± = 0. It is also convenient to introduce the reduced intensity
Î( f ,g; t),

Î( f ,g; t)≡ Γ

〈Γ f 〉〈Γg〉
I( f ,g; t) = e−Γ t

{
Ch[ f ,g]+Cc[ f ,g]cos(∆M t)+Sc[ f ,g]sin(∆M t)

}
. (2.14)

3. Conditions for motion reversal asymmetries

The original proposal of [2, 3] to observe T violation independently of CP violation, imple-
mented by BaBar [1] after [4], contained three ingredients:
I - Time reversal in the B0

d–B̄0
d Hilbert space: define a reference transition P1→ P2(t) among me-

son states, and compare with the reversed transition P2 → P1(t). The probability that an initially
prepared state P1, evolved to P1(t), behaves like a P2, is:

P12(t) = |〈P2|U(t,0)|P1〉|2 . (3.1)

The proposed T violating asymmetry is

P12(t)−P21(t) . (3.2)

II - Beyond the use of P1,P2 = B0
d , B̄

0
d states. If the transitions B0

d � B̄0
d are used, the asymmetry is

not independent of CP: by construction, it is both CP and T violating (and very small since it comes
from the parameter δ ). A new reference transition B0

d → B+ was introduced, to be compared with
B+→ B0

d . In a decay channel with well-defined CP = + and negligible CP violation, the reference
transition can be accessed by looking for decay events f1 where a B meson decays to a self-tagging
channel of B̄0

d and the other B meson decays later to a CP eigenstate fCP=+ decay where one can
neglect CP violation. Then, the main problem is how to measure the reverse transition.
III - The entangled character of the initial state is crucial to (i) connect double decay rates with
meson transition rates and (ii) identify the reverse transition. If we assume that observing a fCP=−
one filters in that side a B−, then, due to the entanglement, we tag the orthogonal state to B− in the
opposite side. This state should be a B+. In general, from eq. (2.8) we can say that, if at time t1 we
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observe in one side the decay product f , the (still living) meson at time t1 is tagged as the state that
does not decay into f , |B9 f 〉,

|B9 f 〉=
1√

|A f |2 + |Ā f |2
(
Ā f |B0

d〉−A f |B̄0
d〉
)
. (3.3)

The orthogonal state 〈B⊥9 f |B9 f 〉= 0, the one filtered by a decay f , is

|B⊥9 f 〉=
1√

|A f |2 + |Ā f |2
(
A∗f |B0

d〉+ Ā∗f |B̄0
d〉
)
. (3.4)

The filtering identity [8, 15] defines the precise meaning of the last statement:

∣∣∣〈B⊥9 f |B1〉
∣∣∣2 =

|〈 f |T |B1〉|2

|A f |2 + |Ā f |2
. (3.5)

Notice that, if B1 = B9g(t), this quantity is the reduced intensity Î(g, f ; t) in eq. (2.14):

Î(g, f ; t) =
|〈 f |T |B9g(t)〉|2

|A f |2 + |Ā f |2
=
∣∣∣〈B⊥9 f |B9g(t)〉

∣∣∣2 . (3.6)

Eq. (3.6) is, therefore, the precise connection between meson transition probabilities and double
decay rates. By measuring Î( f1, f2; t), – we use the shorthand notation ( f1, f2) in the following
to refer to the considered first and second decays – we study probabilities P12(t) for transitions
between meson states (B1,B2) given by

|B1〉= |B9 f1〉 , |B2〉= |B⊥9 f2
〉 , (3.7)

i.e. transition probabilities for (B1,B2) = (B9 f1 ,B
⊥
9 f2

). To compare with P21(t) one needs the re-
verse transition (B⊥9 f2

,B9 f1), but the applied filtering and tagging methods do not give this transi-
tion. Two new decay channels f ′1 and f ′2 in ( f ′2, f ′1) give the transition (B9 f ′2

,B⊥9 f ′1
). Then, provided

they fulfill
|B9 f ′i 〉= |B

⊥
9 fi
〉, (3.8)

this new transition ( f ′2, f ′1) gives the reversed meson transition. For flavour specific decay channels,
with no wrong lepton charge sign decays, |B0

d〉 = |B9`−〉 and |B̄0
d〉 = |B9`+〉, the identity is obvi-

ously |B̄0
d〉= |(B0

d)
⊥〉: if f1 = X`+ν`, then f ′1 = X ′`−ν̄` ( f1 = `+ and f ′1 = `− for short). For the CP

channel, equations (3.3), (3.4) and (3.8), give the condition these channels should satisfy:

λ f2λ
∗
f ′2

=−
∣∣∣∣qp
∣∣∣∣2 . (3.9)

Following eq. (3.9), f2 = J/ψK+ and f ′2 = J/ψK− were proposed in [2–4] and used by BaBar in [1],
where K± are the neutral kaon states filtered by the CP eigenstate decay channels. Consequently,
the states B∓ are well defined and given by equation (3.4) for each of the two decay channels. From
now on, we use KS for K+ and KL for K− as it is an accurate approximation up to CP violation in
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the kaon system. Considering that λJ/ψKS ≡ λKS ∼
∣∣∣ q

p

∣∣∣e−i2β and λJ/ψKL ≡ λKL ∼ −
∣∣∣ q

p

∣∣∣e−i2β , we
use the general parameterisation

λKS =
∣∣∣∣qp
∣∣∣∣ ρ (1+ ερ)e−i(2β+εβ ) , λKL =−

∣∣∣∣qp
∣∣∣∣ 1

ρ
(1+ ερ)e−i(2β−εβ ) , (3.10)

in terms of the real parameters {ρ,β ,ερ ,εβ}, which allows us to control deviations from condition
(3.9). By properly comparing double decay rates corresponding to two channels, one from {`+, `−}
and the other from {J/ψKS,J/ψKL} (KS and KL for short in the following), we will therefore
measure genuine time-reverse processes provided

ερ = 0 , εβ = 0 . (3.11)

Deviations from (3.11) contaminate time reversal asymmetries and should be conveniently sub-
tracted out. Notice that eq. (3.9) is fulfilled even if ρ 6= 1. Equation (3.9) guarantees that the
considered channels allow to truly compare the transition P2 → P1(t) with the reversed transition
P1→ P2(t). Nevertheless, in order to ensure that this motion reversal asymmetry is truly a time re-
versal asymmetry, one needs decay channels f such that in the limit of T invariance, S f = 0 [8,15].
For CP eigenstates, T invariance implies S f = 0 provided there is no CPT violation in the corre-
sponding decay amplitude, in accordance with [7]. This is equivalent to no CP violation in the
decay, in the T invariant limit, giving, in addition to eq. (3.11), the condition ρ = 1. We then con-
clude that we should perform the data analysis with arbitrary ρ , ερ and εβ and that any deviation
from

ρ = 1 , ερ = 0 , εβ = 0 , (3.12)

is a source of fake T violation. Notice that in the absence of CP violation in the decays filtering
B±, these states would be orthogonal, implying eq. (3.12), the orthogonality condition (3.9) would
be automatically satisfied. Finally, it is convenient to clarify that without wrong flavour decays in
B0

d → J/ψK0 and B̄0
d → J/ψK̄0, λKS +λKL = 0 [16], implying

ρ = 1 , εβ = 0 , (3.13)

clearly showing full compatibility among eq. (3.9) and the absence of wrong flavour decays. In
terms of CKS , CKL , SKS , SKL , RKS and RKL (eq. (2.13)), no wrong flavour decays imply CKS−CKL = 0,
SKS +SKL = 0 and RKS +RKL = 0; if, in addition, we impose eq. (3.9), CKS = CKL = δ .

4. Independent asymmetries at BaBar

To reduce dependences on detection efficiencies in the different channels, in [1], instead of
measuring Ch[ f ,g], Cc[ f ,g] and Sc[ f ,g] in eq. (2.11) or eq. (2.14), the BaBar collaboration fixed
the normalization of the constant term and used the decay intensity

g f ,g(t) ∝ e−Γ t {1+C[ f ,g]cos(∆M t)+S[ f ,g]sin(∆M t)} , (4.1)

and thus two quantities,

C[ f ,g] =
Cc[ f ,g]
Ch[ f ,g]

, S[ f ,g] =
Sc[ f ,g]
Ch[ f ,g]

, (4.2)

5



P
o
S
(
C
O
R
F
U
2
0
1
7
)
1
9
9

Contribution title Miguel Nebot

are measured for each pair ( f ,g). According to eq. (2.12), they verify

C[ f ,g] = C[g, f ], S[ f ,g] =−S[g, f ] . (4.3)

Genuine discrete asymmetries can be constructed combining one flavour specific channel and one
CP channel: starting from one reference transition, one can generate another three by means of
T, CP and CPT transformations. Because of eq. (4.3), the four transitions B̄0

d → B−, B− → B̄0
d ,

B0
d → B− and B−→ B0

d saturate all the independent parameters measurable with one flavour spe-
cific and one CP decays. Table 1 shows the different meson state transitions, the corresponding
decay channels, and the effect of the discrete symmetry transformations. Only eight parameters
are independent: they are the C[ f ,g] and S[ f ,g] corresponding to the decays (`+,KS), (KL, `

−),
(`−,KS) and (KL, `

+). BaBar has, of course, at least two independent ways of measuring the same
parameter by means of the time-ordering of the decays. This operation is not a symmetry trans-
formation from the left to the right-hand side of Table 1. Only six independent asymmetries can

Table 1: Double decay channels, the associated filtered meson states and their transformed transitions under
the three discrete symmetries.

Transition g f ,g(t) gg, f (t) Transition
Reference B̄0

d → B− (`+,KS) (KS, `
+) B+→ B0

d Reference
T-transformed B−→ B̄0

d (KL, `
−) (`−,KL) B0

d → B− T-transformed
CP-transformed B0

d → B− (`−,KS) (KS, `
−) B+→ B̄0

d CP-transformed
CPT-transformed B−→ B0

d (KL, `
+) (`+,KL) B̄0

d → B+ CPT-transformed

be constructed out of the eight independent parameters, corresponding to three time dependent
asymmetries

AT(t) = gKL,`−(t)−g`+,KS(t) , (4.4)

ACP(t) = g`−,KS(t)−g`+,KS(t) , (4.5)

ACPT(t) = gKL,`+(t)−g`+,KS(t) , (4.6)

which can be explicitely expanded as

AS(t) = e−Γt {
∆CS[`+,KS] cos(∆M t)+∆SS[`+,KS] sin(∆M t)

}
, S = T,CP,CPT , (4.7)

where

∆S+
T ≡ ∆ST[`+,KS] = S[KL, `

−]−S[`+,KS] , (4.8)

∆S+
CP ≡ ∆SCP[`+,KS] = S[`−,KS]−S[`+,KS] , (4.9)

∆S+
CPT ≡ ∆SCPT[`+,KS] = S[KL, `

+]−S[`+,KS] , (4.10)

and the corresponding ones for the cos(∆M t) terms, are the six independent asymmetries that can
be constructed (with the same notation of reference [1] for easy comparison). To illustrate the

6
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difference among asymmetries which would be equivalent in a CPT invariant world, one can write
(expanding to linear order in Re(θ), Im(θ)):

∆S+
T ' SKS −SKL−Re(θ)(SKSRKS +SKLRKL)+ Im(θ)(S2

KS
−S2

KL
+CKS +CKL), (4.11)

∆S+
CP ' 2SKS +2Im(θ)(S2

KS
−1), (4.12)

No matter whether CPT Violation is expected to be small, conceptually it is very important to
emphasize that ∆S+

T 6= ∆S+
CP for several reasons. For ∆S+

T to be truly T violating, eq. (3.12) should
be fulfilled. Then, the dominant term in eqs. (4.11)–(4.12) should be equal: SKS−SKL = 2SKS . But,
in general, ∆S+

T and ∆S+
CP differ by terms that are CPT violating and CP invariant in ∆S+

T , and by
terms that are CPT violating and T invariant in ∆S+

CP. Only the pieces that do not depend on θ are
identical. See [9] for an extended discussion including ∆C+

T 6= ∆C+
CP and the CPT asymmetries.

5. Genuine asymmetry parameters

Although the reduced intensity Î( f ,g; t) involves three coefficients Ch, Cc and Sc, the BaBar
analysis [1] focused on the ratios C = Cc/Ch and S = Sc/Ch in eq. (4.2). From the experimental
point of view those ratios might be more appropriate, but the theoretical side, access to the three
independent coefficients would be more desirable: for instance, while an asymmetry in the ratios
does imply a symmetry violation, no asymmetry in the ratios may nevertheless come from asym-
metries in both the numerator and the denominator. Obtaining the three independent coefficients
Ch, Cc and Sc for each pair of decay channels might be particularly interesting for asymmetries
in the ratios with values that are, within uncertainties, compatible with zero, like e.g. CPT asym-
metries. Fortunately, using input information for |q/p| or, equivalently δ , it can be achieved. We
have

Ch[`±,KS,L]+Cc[`±,KS,L] =
(1±δ )(1∓CKS,L)

2(1−δCKS,L)
= Ch[`±,KS,L]

(
1+C[`±,KS,L]

)
. (5.1)

Equation (5.1) is interpreted in the following way: while C[`±,KS,L] and CKS,L will be constrained or
extracted from data, including information on δ , we can compute Ch[`±,KS,L], and thus Cc[`±,KS,L]
and Sc[`±,KS,L] separately. One can then build T, CP and CPT complete time-dependent asymme-
tries analog to eqs. (4.4), (4.5) and (4.6),

AS(t) = e−Γt {
∆C S

h +∆C S
c cos(∆M t)+∆S S

c sin(∆M t)
}

, S = T,CP,CPT . (5.2)

We refer to ∆C S
h , ∆C S

c and ∆S S
c in these asymmetries as “genuine asymmetry parameters” since

they collect the full time-dependent difference of probabilities in transitions among meson states
given in eq. (3.2). For detailed expressions expanded up to linear order in θ and δ and a detailed
discussion of the physical interpretation of (5.1) we refer to [9].

6. Genuine T-reverse and fake asymmetries

In section 3 we have discussed how asymmetries like eqs. (4.4) and (4.6) are “contaminated”
through contributions which are not truly T-violating (this also applies to the genuine asymmetry
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parameters from section 5). It occurs when the conditions in eq. (3.12) are not fulfilled. The
challenge is to disentangle fake effects in T and CPT asymmetries due to deviations from the
requirements of eq. (3.12). The reasoning is illustrated using, for example, the asymmetry ∆S T

c .
First, we remind that in terms of all parameters – δ , ρ , β , ερ and εβ in eq. (3.10), plus the complex
θ parameter –, ∆S T

c is simply a function ∆S T
c (ρ,β ,ερ ,εβ ,δ ,θ). ∆S T

c would be a true T-violation
asymmetry if ερ = εβ = 0 and ρ = 1 (eq. (3.12)). It is then possible to do the following separation,
at each point in parameter space, when performing a fit to the BaBar observables:

∆S T
c (ρ,β ,ερ ,εβ ,δ ,θ)=

[
∆S T

c (ρ,β ,ερ ,εβ ,δ ,θ)−∆S T
c (1,β ,0,0,δ ,θ)

]
+∆S T

c (1,β ,0,0,δ ,θ) .
(6.1)

The term within square brackets, ∆S T
c (ρ,β ,ερ ,εβ ,δ ,θ)−∆S T

c (1,β ,0,0,δ ,θ) has exactly the
desired properties for the fake contribution: independently of β , δ and θ , it vanishes when the
conditions eqs. (3.9) and (3.12) are fulfilled. Then, the last term, ∆S T

c (1,β ,0,0,δ ,θ) is the truly
T-violating contribution, the genuine T-reverse one. It is then possible to quantify the amounts of
fake and genuine T-reverse contributions to T and CPT asymmetries like the BaBar ones ∆S+

T , ∆C+
T ,

∆S+
CPT, ∆C+

CPT, and also, of course, to the T and CPT genuine asymmetry parameters involving the
individual Ch, Cc and Sc coefficients. In terms of δ , ρ , β , ερ and εβ , the genuine T-reverse
asymmetries are obtained for{

CKS

CKL

}
→ δ ,

{
SKS

−SKL

}
→−

√
1−δ 2 sin2β ,

{
RKS

−RKL

}
→
√

1−δ 2 cos2β . (6.2)

7. Results

With the information on the C[`±,KS,L] and S[`±,KS,L] coefficients provided in [1], including
full covariance information and separate statistical and systematic uncertainties, supplemented with
information on |q/p| from [17], we perform a fit in terms of {Re(θ) , Im(θ) ,δ ,ρ,β ,ερ ,εβ}. We
can also address a more restricted situation where no wrong flavour decays (i.e. ∆F = ∆Q) are
allowed in B0

d , B̄
0
d → J/ΨKS,L, that is imposing λKS + λKL = 0: in terms of the previous set of

parameters, that means setting ρ = 1 and εβ = 0. For a details of the fit procedure, more detailed
results, tables and plots, we refer to [9], and focus here on a few significant aspects. Starting with
the CPT violating θ parameter, from the fits,{

Re(θ) =±(5.92±3.03)×10−2

Im(θ) = (0.22±1.90)×10−2

}

and

{
Re(θ) =±(3.92±1.43)×10−2

Im(θ) = (−0.22±1.64)×10−2

}
with λKS +λKL = 0, (7.1)

which improve significantly on the uncertainty of the real part quoted by the Particle Data Group
(PDG) in [17], based on BaBar [18, 19] and Belle [20] results. For similar results based on the
samed Babar data, see [21]. Figure 1 shows the result of the fit for the imaginary vs. real part of
θ . To illustrate the difference between the genuine T-reverse and CP asymmetry parameters figures
2(a), 2(b), show true T-reverse asymmetries versus CP asymmetries for ∆S and for the genuine
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Re(θ) sign(RKS
)

Im
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Figure 1: Im(θ) vs. Re(θ)sign(RKS) in the full fit (blue regions, solid contours), and in the fit with λKS +
λKL = 0 (red regions, dashed contours); dark to light regions correspond, respectively, to two-dimensional
68%, 95% and 99% C.L..

asymmetry coefficients ∆Sc and ∆Cc. The dashed diagonal line would correspond to strict equality
among both observables. In figures 2(c), 2(d), we show genuine T-reverse vs. fake contributions
for ∆S+

T and for the genuine asymmetry parameter ∆S T
c . This is particularly relevant for the ∆S+

T
BaBar asymmetry since sizable fake contributions could have weakened the evidence for the time
reversal violation observation independent of CP. It is clear that the T-fake contributions to ∆S+

T
and ∆S T

c are below the percent level.

∆S
+

CP

∆
S

+ T
g
en

u
in

e
T

-r
ev

er
se

λKS
+ λKL

= 0

−1.6 −1.5 −1.4 −1.3 −1.2 −1.1
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

(a) ∆S.

∆S CP
c

∆
S

T c
g
en

u
in

e
T

-r
ev

er
se

λKS
+ λKL

= 0

−0.80 −0.75 −0.70 −0.65 −0.60 −0.55
−0.80

−0.75

−0.70

−0.65

−0.60

−0.55

(b) ∆Sc.

∆S
+

T
fake

∆
S

+ T
g
en

u
in

e
T

-r
ev

er
se

λKS
+ λKL

= 0

−0.02 −0.01 0.00 0.01 0.02
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

(c) ∆S+
T .

∆S T
c

fake

∆
S

T c
g
en

u
in

e
T

-r
ev

er
se

λKS
+ λKL

= 0

−0.02 −0.01 0.00 0.01 0.02
−0.80

−0.75

−0.70

−0.65

−0.60

(d) ∆S T
c .

Figure 2: Genuine T-reverse vs. CP asymmetries and genuine T-reverse vs. fake contributions.

8. ω effect

Quantum gravity or in general deviations from any of the three assumptions – Lorentz in-
variance, locality of interactions and unitary – of the CPT theorem, may lead to (independent)
violations of CPT and, accordingly, to an ill-defined CPT quantum mechanical operator [22–24].
The CPT breaking associated to ill-defined particle-antiparticle states modifies the EPR correla-
tion and produces the ω-effect [25–27]. Treating it perturbatively, i.e. still talking the language of
B0

d , B̄0
d , the perturbed two-particle state will contain a component of the “wrong” symmetry at the
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instant of their production by the decay of ϒ(4S): instead of eq. (2.8) it would read

|Ψ0〉 ∝ |B0
d〉|B̄0

d〉− |B̄0
d〉|B0

d〉+ω
[
|B0

d〉|B̄0
d〉+ |B̄0

d〉|B0
d〉
]
, (8.1)

where ω = |ω|eiΩ is a complex CPT-breaking parameter [25,26], associated with the non-identical
particle nature of the neutral meson and antimeson states. The presence of an ω-effect weakens
the entanglement of the initial state (8.1), as follows from the fact that when ω = ±1 the state
simply reduces to a product state, whilst the state is fully entangled when ω = 0. Furthermore, the
coefficients in the general time-dependent intensity (2.11) are modified,

Ch[ f ,g]→ Ch[ f ,g], Cc[ f ,g]→ Cc[ f ,g], Sc[ f ,g]→Sc[ f ,g], (8.2)

where now, contrary to eq. (2.12),

Ch[ f ,g] 6= Ch[g, f ], Cc[ f ,g] 6= Cc[g, f ], Sc[ f ,g] 6=−Sc[g, f ]. (8.3)

The redundancy due to the different time orderings in the Babar data for the determination of
Ch[ f ,g], Cc[ f ,g] and Sc[ f ,g] does now provide sensitivity to the presence of ω: C[`±,g]−C[g, `±]
and S[`±,g]+S[g, `±] are linear in both the real and imaginary parts of ω . With these basic ingre-
dients, one can develop a full analysis along the lines of section 7, but including ω . For detailed
discussions and results, we refer the interested reader to reference [28], from which we only men-
tion here that one can indeed extract or bound both the real and imaginary parts of ω , as Fig. 3
shows: for the first time for Im(ω), and with less precision than analyses focusing only on flavour
specific channels in the case of Re(ω) [27].

Re(ω)

Im
(ω

)
si

gn
(R

K
S
)

λKS
+ λKL

= 0

−0.15 −0.10 −0.05 0 0.05 0.10 0.15
−0.10

−0.05

0

0.05

0.10

0.15

0.20

Figure 3: sign(RKS)Im(ω) vs. Re(ω) in the full fit (blue regions, solid contours), and in the fit with
λKS +λKL = 0 (red regions, dashed contours).

Conclusions

We have discussed genuine T, CP and CPT asymmetry parameters at B-factories, the separa-
tion of fake contributions to T and CPT violating observables and obtained from a fit to existing
data, improved bounds on the CPT violating parameters Re(θ) in B0

d–B̄0
d mixing and Im(ω).
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