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1. The gravitational field of quantum matter

In 1975, Colella, Overhauser, and Werner [1] measured the phase shift induced by the Newto-
nian gravitational potential V = −mgz on a neutron in a spatial superposition state. Their experi-
ment is widely celebrated as the first observation of gravitational and quantum effects in a common
system. For the more than four decades that have since passed, the experimental status of gravita-
tional quantum physics has not changed much: the only observations performed involve external
gravitational fields in their Newtonian limit.

Figure 1: A massive quantum particle is found in a superposition state after having passed a double slit.
What is the gravitational potential of this state, as sensed by a test mass?

The search for a unified theory that includes both gravity and quantum matter is driven by the
opposite question: how quantum matter acts as a source of gravity. Arguably the simplest scenario
to illustrate the problem is the double slit experiment, depicted in figure 1. If a massive particle
passes a double slit, according to quantum mechanics, it will be in a superposition state of the
possible paths. A second mass, which may very well be in a classical state, with a force sensor
attached can serve as a device to monitor the gravitational potential. Assuming that we could
create a superposition state massive enough, and a force metre sensitive enough, what gravitational
potential would we observe?

It is important to remind oneself that whatever answer one comes up with is purely driven by
theoretical ideas. There is no experimental evidence to back it up.

The default answer: quantised gravity Mainly inspired by the success of quantum field theory
and the standard model of elementary particle physics, attempts have been made since the 1930s
to reformulate general relativity as a quantum theory. The philosophical principle guiding most
approaches seems to be that gravity is simply another field which should be quantised along the
same lines as the quantisation of matter fields.

If the particle in figure 1 was electrically charged, then the electric field it creates after having
passed the double slit would itself be in a superposition of two different field configurations. Simi-
larly, from quantised gravity one would expect that the superposition of the massive particle results
in a superposition of two different spacetimes.

However, as pointed out by Penrose [2], there is no well-defined way of comparing the timelike
Killing vectors of both spacetimes to each other, and hence the quantum mechanical time evolution
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operator on such a superposition of spacetimes is fundamentally ill-defined. Consequentially, even
in situations that are perfectly non-relativistic (velocities v� c) and well-approximated by Newto-
nian gravity (Gm� Rc2, where R is the particle size) our current theories for quantum matter and
for gravity are incompatible.

Usually, this incompatibility in the low energy regime is assumed to be resolved by pertur-
bative quantum gravity (i. e. the quantisation of the metric field perturbation in linearised general
relativity) which is seen as an effective theory for whatever the full quantum theory of gravity might
be. The Newtonian gravitational potential for the superposed particle is then in a superposition, ex-
actly as the electric potential for the charged particle would be. However, with the current state of
quantum gravity research this assumption is little more than an educated guess. On the other hand,
the nonrenormalisability of perturbative quantum gravity shows that gravity must be different from
the standard model interactions in some respect.

The alternative: quantum matter on a classical spacetime The second possible solution starts
with the assumption that general relativity provides a correct description of gravity, not just as the
classical limit of some quantum theory, but in a fundamental sense; that the only thing that quantum
physics changes is the way we describe matter fields living on spacetime—not spacetime itself.

While this idea may sound crazy at first sight, it is actually more conservative and closer to
the intuition that lead Einstein to the discovery of general relativity. It is driven by an entirely
different understanding of Einstein’s theory: the lesson to learn from it is not that gravity is simply
another field; rather, the main message is that there is no such thing as gravity—at least not as
a fundamental interaction. There is only spacetime and the matter on it which both sources the
curvature of spacetime and follows it with its motion.

Of course, these are only philosophical considerations which are no indication for the physical
relevance of such an approach. In order to be taken seriously as a physical theory, one must address
the questions whether there is a well-defined mathematical model consistent with past observations,
as well as, which predictions it makes for possible future experiments. I will discuss the first
question in section 2 and the second one in section 3 of this article.

2. Fundamentally semiclassical gravity

In general relativity, the curvature of spacetime is described by the Einstein tensor, defined
from the metric tensor gµν , the Ricci tensor Rµν , and the scalar curvature R as

Gµν := Rµν −
1
2

gµν R , (2.1)

which forms the left-hand side of Einstein’s field equations:

Gµν =
8π G

c4 Tµν . (2.2)

The right hand side of these equations is given by the classical stress-energy tensor of all matter
fields. Although the matter in our universe is quantum, systems with a significant gravitational field
are usually in a well-localised state |ψ〉, which is why the stress-energy tensor can be replaced by
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the expectation value of the corresponding quantum operator, yielding the semiclassical Einstein
equations:

Gµν =
8π G

c4 〈ψ | T̂µν |ψ〉 . (2.3)

In quantised gravity one would expect this equation to break down if the states |ψ〉 becomes non-
classical, due to quantum fluctuations. However, if spacetime is assumed to be fundamentally
classical, equation (2.3) provides one possible way to reconcile it with quantum matter fields. This
possibility for a fundamentally semiclassical theory has been proposed already more than half a
century ago [3, 4].

2.1 Concerns about semiclassical gravity

It is sometimes claimed that semiclassical gravity would be inconsistent, or even in contradic-
tion to observation, often with reference to the works by Page and Geilker [5, 6] or by Eppley and
Hannah [7]. Most of these claims are a variant of one of the following arguments:

Divergence freedom of Einstein’s equations The Einstein tensor is covariantly conserved, i. e.
it has vanishing four-divergence, ∇µGµν = 0, where ∇ denotes the covariant derivative. Therefore,
as a consequence of Einstein’s equations, the stress-energy tensor must be covariantly conserved
as well:

∇µ 〈ψ | T̂ µν |ψ〉= 0 . (2.4)

However, when the state |ψ〉 is projected into one of the eigenstates of some Hermitian operator
during a measurement, this equation is violated.

This, of course, only applies to the instantaneous collapse of the Copenhagen interpretation.
In a no-collapse interpretation (e. g. many worlds), on the other hand, all branches will contribute
to the gravitational field leading to obvious contradictions to everyday experience—this is the main
argument Page and Geilker [5, 6] illustrate with a simple torsion balance experiment.

The situation becomes more difficult if one adopts the point of view of an objective collapse
of the wave function as in collapse models [8], and in fact it depends on the concrete way in which
the collapse is introduced whether or not equation (2.4) is satisfied.

Superluminal signalling The second common concern against semiclassical gravity is the al-
leged possibility to violate causality, as it opens a possibility to signal faster than light. Essentially,
the reason why superluminal signalling can occur is that semiclassical gravity gives access to the
wave function itself, rather than expectation values of Hermitian operators. A concrete scheme for
how to exploit this to send signals faster than light is depicted in figure 2. An entangled spin-state
of two particles is created, with one particle each being sent to A and B, respectively, both of which
have the ability to perform a spin-measurement using a Stern–Gerlach device.

In standard quantum mechanics, B will find a particle at positions ±d on the screen with 50 %
probability for each position, regardless of whether or not A measures the spin. With semiclassical
gravity, however, the superposition state (figure 2, bottom) will gravitationally self-attract and show
on the screen at positions ±d′ which are different from the positions ±d found for the collapsed
state (figure 2, top). Therefore, from the measurement outcome at B one can determine whether or
not A performed a measurement along the z-axis, and this decision (measurement yes/no) can be
used to encode a binary signal.
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Figure 2: Predictions of semiclassical gravity for a pair of entangled particles passing through two distant
Stern–Gerlach apparatuses [9]. While the state with well defined spin in z-direction measured by A (top)
is found either around the position +d or −d with probability 50 %, the superposition state (bottom) where
A does not perform a measurement in z-direction is subject to gravitational self-attraction and, therefore,
is found either around the position +d′ or −d′. The measurement outcome at B can be used to infer the
measurement basis (“signal”) at A.

In principle, the distance L between A and B does not matter, and if it is chosen such that
L > cτ , where τ is the time it takes to perform the measurements, then the signal will arrive at B
faster than any light signal can. In practice, this is nearly impossible: even if one could measure the
point of impact of a basketball sized sphere of osmium1 with the precision of one atomic diameter,
and one could prepare a coherent superposition state of such a 170 kg object, A and B would still
have to be more than 10 000 km apart in order to actually communicate faster than light. Of course,
the possibility of superluminal communication poses a potential problem even if it is not practically
achievable. However, the huge gap between experimentally feasible parameters and the parameters
required to exploit this possibility gives plenty of room for unknown effects (e. g. gravity induced
wave function collapse) which may render this type of faster than light signalling impossible also
in principle.

In addition, it is possible to introduce a nonlinear dynamics without permitting faster than
light signals, namely to allow only for such nonlinear terms which depend on the local state and
measurements in the past light cone [10, 11]. In the case of semiclassical gravity, this would imply
that after A’s measurement the particle at B would still evolve as in figure 2 (bottom), and only
after the information of the measurement at A reaches B (at the speed of light!) the evolution
would change to the one in figure 2 (top). A collapse of this kind is completely compatible with
standard quantum mechanics in the experimentally tested regime, and the nonlinearity could not be
exploited for superluminal signalling. Although this collapse prescription makes predictions that
differ from semiclassical gravity with the standard collapse in the case of entangled particles, there
are no observable differences for single particle wave functions.

1With ρ ≈ 23 g/cm3, osmium is the densest of the known elements.
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Unnatural collapse Finally, a third criticism concerns the applicability of semiclassical gravity
for explaining the wave function collapse. Although it is introduced as a mere model to couple
quantum matter to a classical spacetime, it would be a great feature if this non-quantum interaction
could also resolve the measurement problem in quantum mechanics by leading to an objective
collapse. The idea that the collapse may be caused by gravity has been proposed before [12, 13, 2,
14], however with different models.

In contrast to those stochastic models, semiclassical gravity describes a deterministic dy-
namics, which cannot explain the stochastic outcomes of measurement results in quantum theory
(at least not without invoking some other source of stochasticity). A spatial superposition state
|ψ〉= (|~x1〉+ |~x2〉)/

√
2 of positions~x1 and~x2 would reduce (“collapse”) to a narrow wave packet

around the average position (~x1 +~x2)/2, rather than one of the two positions ~x1 or ~x2 with 50 %
probability each.

In conclusion, semiclassical gravity by itself seems incapable of explaining the wave function
collapse, and some different collapse mechanism must be added to it in order to obtain a consis-
tent theory. Nonetheless, there is no conclusive theoretical argument why this should not be the
case, and therefore, the possibility of semiclassical gravity as a fundamental alternative to quantum
gravity remains open.

2.2 Alternative coupling schemes

Equation (2.3) is only one possibility to couple quantum matter to a classical spacetime. In
principle, different types of coupling are possible, as long as they agree with equation (2.3) in the
classical limit. A specific proposal for an alternative coupling has been presented by Tilloy and
Diósi [15], where the idea is to take an objective wave function collapse [8] seriously, and then use
the collapse events described by this mechanism—rather than the wave function—as the source of
the gravitational field.

From the mathematical description, this approach is equivalent to a weak measurement of the
mass distribution, where the measurement signal is used as a feedback to determine the curvature
of spacetime. As this scheme is mathematically equivalent to standard quantum mechanics with
decoherence, there is no issue with superluminal signalling in this approach. This is ensured by
adding stochastic terms to the semiclassical equation (2.3).

The collapse is driven by the stochastic process of the collapse model, and will lead to the
common result of a superposition state ending up at each position with a certain probability, rather
than in a deterministic average position. Of course, the origin of this stochastic collapse remains
unknown in this approach, and it is unclear whether the resulting stochastic stress-energy tensor
can be covariantly conserved.

3. Newtonian semiclassical gravity and experimental tests

3.1 The Schrödinger–Newton equation

In the Newtonian limit of non-relativistic velocities and weak gravitational fields, equation (2.3)
becomes the Poisson equation

∇
2VG = 4π G〈ψ | ρ̂ |ψ〉 (3.1)
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for the gravitational potential VG, where ρ̂ = mφ̂ †φ̂ is the mass density operator of a massive field
with field operators φ̂ . Inserting this potential into the second-quantised Schrödinger equation for
N particles yields the nonlinear N-particle Schrödinger–Newton equation:

ih̄Ψ̇N(t,~r1, . . . ,~rN) =

(
−

N

∑
i=1

h̄2

2mi
∇

2
~ri
+Vlinear +VG[ΨN(t,~r1, . . . ,~rN)]

)
ΨN(t,~r1, . . . ,~rN) (3.2a)

VG[ΨN(t,~r1, . . . ,~rN)] =−G
N

∑
i=1

N

∑
j=1

mim j

∫ |ΨN(t,~r′1, . . . ,~r
′
N)|2

|~ri−~r′j|
d3r′1 · · ·d3r′N . (3.2b)

ΨN is the N-particle wave function for particle coordinates ~r1, . . . ,~rN , and Vlinear stands for any
non-gravitational, linear potential. For the special case N = 1 of a single particle, the Schrödinger–
Newton equation reads

ih̄ψ̇(t,~r) =
(
− h̄2

2m
∇

2−Gm2
∫

d3r′
|ψ(t,~r′)|2

|~r−~r′|

)
ψ(t,~r) . (3.3)

The gravitational potential is sourced by the wave function, as if its absolute value squared was
a mass density, rendering the Schrödinger evolution nonlinear. This self-gravitational potential
counteracts the free spreading of a wave packet according to standard quantum mechanics. The
gravitational interaction decreases more slowly (with 1/r2) than the quantum mechanical spreading
(with 1/r3) and, therefore, it can become comparable or even dominant for large masses and widely
spread wave functions.

For elementary particles, however, the gravitational interaction is too weak to result in any
observable effect2. In order to arrive at testable consequences of the Schrödinger–Newton equation
one must study its behaviour for many-particle systems, where the evolution of the centre of mass
is of particular interest.

Although, strictly speaking, the centre of mass motion cannot be separated in the nonlinear
equation (3.2), an approximate equation can be obtained by taking into account that the mutual
non-gravitational interactions that keep the many-particle system in its shape are much stronger
than the gravitational terms. The gravitational potential in the centre of mass Schrödinger equation
then takes the form of a triple convolution:

VG =−G
∫∫∫ |ψ(t,~r′)|2 ρ(~r′′)ρ(~r′′′)

|~r−~r′−~r′′+~r′′′|
d3r′ d3r′′ d3r′′′ , (3.4)

where ρ(~r) is the mass distribution of the constituents with respect to the centre of mass, which can
be strictly defined in terms of the marginal distributions of the relative coordinate wave function3.

If the centre of mass wave function is much wider than the size of the system, the mass distri-
bution ρ(~r) can effectively be considered point-like, and the Schrödinger–Newton equation takes
the single particle form (3.3).

2For a proton, the gravitational interaction only becomes comparable to the free spreading for a wave packet size of
about one million light years.

3see equation (37) of [16]
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Figure 3: An osmium particle is initially trapped in a harmonic potential with frequency ω = 0.1 s−1.
The diagrams show the relative deviation of the wave function width according to the Schrödinger–Newton
equation compared to the standard Schrödinger equation without self-gravitation. Left: for a mass of 109

atomic mass units. Right: for a mass of 1010 atomic mass units.

3.2 Experimental test of free spreading

The free spreading of a spherically symmetric, Gaussian wave packet can be modelled under
the assumption that self-gravitational effects are weak and, therefore, the Gaussian shape remains
approximately intact:

ψ(t,r) =
(

3
2π u(t)

)3/4

exp
(
− 3r2

4u(t)

)
, (3.5)

where u(t) = 〈r2〉(t) is the width of the wave function.
Generally speaking, for spherically symmetric wave functions, one can derive a set of first

order differential equations for the second moments [17]:

∂

∂ t
〈r2〉(t) = 1

m
〈~r ·~p+~p ·~r〉(t) (3.6a)

∂

∂ t
〈p2〉(t) =−m

∂

∂ t
〈VG〉(t) (3.6b)

∂

∂ t
〈~r ·~p+~p ·~r〉(t) = 2

m
〈p2〉(t)−〈~r ·∇VG〉(t) . (3.6c)

This is not a closed system, because the gravitational potential VG depends on the wave function.
However, with the approximation (3.5) that the wave function remains a Gaussian, VG becomes a
function of only the width u(t) and the system can be cast into a third-order initial value problem:

...u (t) =−3ω
2
SN f (u(t)) u̇(t) , (3.7)

with ω2
SN = Gm/R3 for a sphere of mass m and radius R, and the initial conditions

u(0) = u0 , u̇(0) = 0 , ü(0) =
9h̄2

2m2 u0
−ω

2
SN g(u0)u0 . (3.8)

The functions f (u) and g(u) can be found in reference [17].
We can now solve equation (3.7) for different values of the total mass and initial spread of

the wave function. Two exemplary results are shown in figure 3. For an osmium sphere of 1010

atomic mass units, initially trapped at
√
〈r2〉 ≈ 1 nm, we find that after 200 seconds 〈r2〉 is about
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1 % smaller with the self-gravitational term than it should be according to the standard Schrödinger
equation without self-gravity.

Experiments on earth do not allow for a free spreading time of 200 seconds—the particle would
simply fall to the bottom of the vacuum chamber after a much shorter time span. However, satellite
experiments [18] could reach the required parameters in terms of mass and detection accuracy.

3.3 Experimental test with bound states

Optomechanical systems have been considered as an alternative route towards testing the self-
gravitational interaction according to the Schrödinger–Newton equation [19, 20]. This was first
studied in the regime of a well localised wave function, hence, in the case where the width of the
wave function ψ(t,~r) in equation (3.4) is much smaller than the width of the mass distribution ρ(~r).
In this case, the Hamiltonian4 takes the effective form (omitting constant terms)

H =
p2

2m
+

mω2
0

2
x2 +

mω2
SN

2
(
x2−2x〈x〉+ 〈x2〉

)
, (3.9)

where ω0 is the frequency of the harmonic trapping potential, and ωSN characterises the strength
of the self-gravitational interaction. For a homogeneous sphere of mass m and radius R we have,
as before, ω2

SN = Gm/R3. The nonlinearity of the Schrödinger–Newton equation is now encoded
in the dependency on the position expectation values.

The self-gravitational term in the Hamiltonian (3.9) has consequences for the evolution of
a squeezed Gaussian state [19, 21]. Although the evolution of the position expectation value is
unaffected by the self-gravitational term and still satisfies the evolution equation

d2

dt2 〈x〉+ω
2
0 〈x〉= 0 , (3.10)

the evolution of the wave function itself is affected. The evolution of the variance of x is now

d3

dt3 〈(x−〈x〉)
2〉+4

(
ω

2
0 +ω

2
SN
) d

dt
〈(x−〈x〉)2〉= 0 . (3.11)

Hence, the internal oscillation of the wave packet is not in phase with its classical oscillation any
longer, but there is a frequency offset

∆ω

ω0
=

√
1+

ω2
SN

ω2
0
−1≈

ω2
SN

2ω2
0
. (3.12)

An important insight, which significantly improves the feasibility of an experimental test, is
that for a very well localised state (i. e. a very narrow centre of mass wave function) it is quite
important to take into account that—for realistic matter—most of the mass density is localised
around the position of the nuclei. The value of ωSN then depends on the atomic mass, as well as
on the localisation σ of the atoms within the crystal structure (given by the Debye–Waller factor):
ω2

SN ∝ Gmatom/σ3 with some pre-factor determined by the shape of the mass distribution. The
numerical value depends only on the choice of material, with osmium having the most favourable

4For simplicity, we discuss only the one-dimensional case here, although all statements can be easily generalized to
three dimensions.
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Material matom / u ρ / g cm-3 σ / pm ωSN / s-1

Silicon 28.086 2.329 6.96 0.096
Tungsten 183.84 19.30 3.48 0.695
Osmium 190.23 22.57 2.77 0.996
Gold 196.97 19.32 4.66 0.464

Table 1: Atomic mass matom, mass density ρ , atomic localisation length σ , and characteristic frequency ωSN

for selected elements.

ℏω0

ℏω0

without self-gravity narrow wavefunction intermediate wavefunction

ωTransition

2ω0

ω0
ω0 + Δω

2 ω0 + 2 Δω

ω0 + Δω01

ω0 + Δω12

ω0 + Δω02

~(n+½)/ω0

n = 0

n = 1

n = 2

~M5/3

~M5/3

~(n+½)/ω0

~(n+½)/ω0

~fn/ω0

~fn/ω0

~fn/ω0

~M5/3

Figure 4: Effect of the Schrödinger–Newton equation on the spectrum [20]. The top part shows the first
three energy eigenvalues and their shift due to the first order perturbative expansion of the Schrödinger–
Newton equation. The bottom part shows the resulting spectrum of transition frequencies. In the narrow
wave function regime (middle part), all energy levels are shifted down by an n-independent value minus an
n-proportional contribution that scales with the inverse trap frequency. In the intermediate regime, where the
wave function width becomes comparable to the localisation length scale of the nuclei, this n-proportionality
does no longer hold, leading to a removal of the degeneracy in the spectrum.

properties (cf. table 1). Experiments achieve a frequency resolution of up to ∆ω/ω0 ≈ 10−6, im-
plying that ω0 should be of the order of kilohertz or below for osmium particles or another order of
magnitude lower for the experimentally well-approved silicon particles.

Note that, although this criterion is independent of the mass of the trapped particle, the re-
quirement that the wave function be narrow compared to the particle size must be met, implying a
minimum mass of the order of a nanogram.

Spectral effects The stationary states for the Hamiltonian (3.9) still display the same essential
properties as the linear harmonic oscillator; specifically, although energy eigenstates are shifted,
neighbouring energy levels all have the same distance to each other, whereas the quantitative
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change is too small to be detected (cf. middle column of figure 4).
However, the Hamiltonian (3.9) is only valid for a narrow wave function. If the wave function

becomes comparable to the particle size, the shape of the wave function matters: a more localised
wave function has a larger self-gravitational binding energy than a less localised one. This shape
dependency leads to a different shift of the different energy levels in such a way that the energy
gaps between neighbouring levels are not equal any longer. Consequentially, if the transition fre-
quencies between different energy levels are monitored, the self-gravitational potential results in a
fine structure, as is shown in the right column of figure 4.

Specifically, the shift ∆En of the energy levels can be calculated as first order perturbation,
using the unperturbed harmonic oscillator eigenstates ψ0

n , yielding the result:

∆En = 〈ψ(0)
n |VG[ψ

(0)
n ] |ψ(0)

n 〉+O(G2)

=−Gmmatom

√
mω0

π h̄

∫
∞

0
dζ exp

(
−2mω0

h̄
σ

2
ζ

2
)

Pn(2
√

mω0

h̄
σζ )

×

(√
2

ζ
erf
(√

2ζ

)
− 4√

π

)
+ constant term . (3.13)

The polynomials Pn are defined as

Pn(z) =
e−z2/2

√
2π (2n n!)2

∫
∞

−∞

dξ e−2ξ 2
Hn (ξ )

2
(

e2zξ Hn (ξ − z)2 + e−2zξ Hn (ξ + z)2
)
, (3.14)

where Hn are the usual Hermite polynomials. This result describes the spectral shift for a particle
of mass m trapped at frequency ω0, chosen such that the wave function width is comparable to the
atomic localisation length scale σ (cf. table 1). matom is the atomic mass of the particle material,
and the constant term in equation (3.13) refers to the state-independent contribution.

Figure 5 shows the resulting transition frequencies, i. e. the blue line (top) corresponds to the
frequency for the transition between ground state and first excited state,

∆ω0→1 =
E1−E0

h̄
= ω0 +

∆E1−∆E0

h̄
, (3.15)

whereas the yellow line (second from top) corresponds to the transition from first to second excited
state,

∆ω1→2 =
E2−E1

h̄
= ω0 +

∆E2−∆E1

h̄
, (3.16)

and so forth. One can see that for an osmium particle of nanogram mass, there is a significant
spread of the transition frequencies, which opens a second possible path towards an experimental
test. The main experimental advantage of this spectral analysis compared to the previously de-
scribed dynamical effect is that no squeezed state needs to be prepared. A concrete proposal for an
experimental realisation was presented in reference [20].

4. Conclusion

The fundamentally semiclassical approach to coupling quantum matter and gravity according
to the semiclassical Einstein equations (2.3) provides us with an experimentally testable alternative
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Figure 5: The frequency spectrum for the transition between neighbouring energy levels (∆n = 1) of a
harmonic oscillator, for osmium at trap frequency ω0 = 2π × 10s−1. At low masses, self-gravity becomes
negligible. At high masses all spectral lines are degenerate, shifted by the same constant ∆ω . The interme-
diate regime, where a significant splitting appears, spans about three orders of magnitude in mass [20].

to quantised gravity at low energies. Contrary to quantum gravity effects, the consequences of the
semiclassical approach would show in experiments that are very close to being realisable in prac-
tice. As there is no conclusive theoretical argument against such an approach, these experiments
are the only definitive way to rule out this fundamental model.

Unfortunately, ruling out the Schrödinger–Newton equation would not be conclusive evidence
that the gravitational interaction must be quantised at low energies. Other coupling schemes than
equation (2.3) could be possible, which may lead to different predictions in the non-relativistic
regime. However, to date the only known alternative formulation of a consistent semiclassical
model is the one by Tilloy and Diósi [15], which is based on collapse models [8] and, therefore,
likely yields observable effects at similar mass scales as the Schrödinger–Newton equation.
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