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The Large Area Telescope aboard the Fermi spacecraft has detected more than 200 γ-ray pulsars
since its launch in 2008. By concurrently fitting standard geometric model light curves onto Fermi

and radio data, researchers have constrained the inclination and observer angles of a number of
pulsars. At first this was done by comparing observed and modelled light curves by eye, and later
via statistical approaches. We fit modelled light curves of 16 pulsars to radio and γ-ray data by
optimising a custom test statistic that we have developed for combining light curves across the
two wavebands, taking their disparate errors into account. We present geometrical constraints
found using this process, and compare them with results found by eye or using other statistical
methods.
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1. Introduction

Pulsar observations have traditionally been dominated by data from the radio wavelength
range, with sources in this band totalling 2 627 at the time of writing, according to the ATNF
Pulsar Catalogue [1]. This is in comparison with the fewer than ten sources that had been detected
in the γ-ray domain prior to 2008 [2]. The launch of the Large Area Telescope (LAT) aboard the
Fermi satellite that year marked the deployment of the first instrument sensitive enough to detect
a significant number or γ-ray photons from pulsars. To date, it has discovered more than 205
new γ-ray pulsars at high sensitivity and resolution, ushering in what’s been called a γ-ray pulsar
revolution [3].

Multi-wavelength pulsar studies can now be done that aid our understanding of pulsar emission
in several wavelength domains. In particular, using some goodness-of-fit test to compare observed
and modelled pulsar light curves (LCs) in the radio and γ-ray bands, one can infer a pulsar’s most
likely physical configuration, in terms of its tilt angle (α) and the observer angle (ζ ) (see e.g. [4]).
Unfortunately, the available γ-ray and radio geometric models often produce very different α and
ζ constraints when fit separately to observations.

Various attempts have been made to find "compromise" (α,ζ ) constraints, i.e. pairs of these
parameters that lead to model LCs that adequately match observations in both bands. This endeav-
our has, however, been complicated by the disparity between the errors characterising the available
radio and γ-ray pulsar observations. Due to this error discrepancy, any goodness-of-fit test that is
dependent on the observational errors, such as Pearson’s χ2 test, will deliver very different values
of the test statistic in the radio and γ-ray wavebands. Adding the test statistics obtained for individ-
ual fits and then minimising the result typically leads to a good fit in one waveband and a relatively
poor fit in the other.

Previous studies have applied Pearson’s χ2 goodness-of-fit test to compare modelled LCs to
radio and γ-ray observations of millisecond pulsars (MSPs) [5] and canonical pulsars [6]. These
studies attempted to circumvent the error-disparity problem by artificially inflating the relative
uncertainties on the observed radio data to match those of the γ-ray observations before addition
of the respective test statistics of the radio-only and γ-only LC fits. This produced LC fits in
both wavebands that are invariably qualitatively better than those obtained without taking error
disparity into account. Compromising the radio data is, however, not optimal for achieving the best
possible LC fits, and deliver formally bad fits, the minimum value of the test statistic being orders
of magnitude larger than the number of degrees of freedom. Furthermore, it has been suggested to
scale the dynamic range of Pearson’s χ2 test statistic to match in the radio and γ-ray bands before
addition [7]. This method was recently applied to a sample of 11 MSPs and canonical pulsars, with
mixed results [8].

Recently, a bespoke test statistic called the Scaled-Flux Normalised χ2 test statistic has been
put forward as an alternative to Pearson’s χ2 test (Seyffert et al., 2018; in preparation). This test
statistic partially negates the influence of significantly differing data errors, making it comparable
between wavebands without the need for error inflation, scaling, or any other manipulation. In this
work we apply the proposed test statistic to a sample of 16 pulsars previously fit by either of the
previous studies ([5],[6]). We then compare the best-fit (α,ζ )1 pairs we find using the SFN test

1Note that pairs of constraints on α and ζ are reported throughout in this order and as measured in degrees.
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statistic to those found by the previous studies, as well as those obtained using by-eye comparison
of modelled and observed LCs. For more details see Bezuidenhout et al. (2018; in preparation).

2. LC fitting methods

Various methods have been applied to find (α,ζ ) pairs that lead to the best possible match
between modelled and observed pulsar LCs in both the radio and γ-ray wavebands simultaneously.
Here we exposit the most notable of these methods, as well as the newly proposed SFN fitting
method.

2.1 By-eye fitting

The first approach used in this work towards finding best-fit (α ,ζ ) pairs is simple by-eye fitting
of modelled LCs onto observed data. For this purpose we modelled the pulsars’ radio emission as
being either a simple, Gaussian beam (core model) or a hollow cone (cone model) [9], and their
γ-ray emission using either the Two-Pole Caustic (TPC) [10] or Outer Gap (OG) [11] geometrical
models.

For a given pulsar, γ-ray and radio LCs are modelled assuming a particular (α ,ζ ) combination,
and then superimposed on the pulsar’s observed LCs. We make a qualitative decision as to whether
or not the experimental data are satisfactorily reproduced by this LC realisation. In making this
judgement, particular attention is paid to whether or not the number of γ-ray and radio peaks in the
modelled LC matches that of the observed LC, whether the peaks have similar shapes, and whether
the peaks occur at similar phases. This process is iterated to cover all possible combinations of α

and ζ , keeping all other model parameters fixed. The best-fit (α ,ζ ) is specified as the centre of the
region in α-ζ space where the resultant modelled LCs are adjudged to adequately fit the observed
LC, with their errors defining a box encompassing this whole region.

This fitting method is, of course, rather subjective: applying this method twice to the same pul-
sar using the same geometric model will result in two slightly differing answers. This is especially
true when there are multiple (α ,ζ ) pairs plausibly replicating the observed data for a single pulsar.
As such, this fitting method is not seen as a serious attempt at constraining pulsar geometries in
and of itself, but rather as a sanity check, or a basis for (qualitatively) judging the accuracy of more
rigorous methods: if a statistical approach produces an answer far out of line with what by-eye
fitting delivers, the former result may be cast into doubt. Conversely, a strong correspondence be-
tween the results of by-eye fitting and a given statistical fit only serves to strengthen the case for
the suitability of the statistical fitting method in question.

2.2 Pearson’s χ2 goodness-of-fit test

Pearson’s χ2 test statistic as applicable to pulsar LC fitting can be written as

χ
2 =

nbins

∑
i=1

(
Ei −Oi

Ui

)2

, (2.1)

where Ei, Oi, and Ui respectively refer to the modelled (expected) intensity, observed intensity, and
uncertainty on the observed intensity in the ith bin of nbins bins of the LC [12].
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If our LC models have nparameters free parameters, the minimum value of χ2 would ideally
be approximately equal to the number of degrees of freedom, Ndof = nbins − nparameters, specifying
a good match between modelled and observed data. However, this rarely occurs for the models
currently available, with the minimum test statistic often being far larger than Ndof. This indicates
that the models are still somewhat rough approximations of the real phenomena.

Typically, finding the (α ,ζ ) pair that leads to the best fit of a pulsar’s modelled and observed
LCs entails the following: first, the χ2 test is applied to all possible (α ,ζ ) pairs in radio and γ rays
separately, yielding two "maps" of test statistic values on axes of α and ζ . These maps can then
be independently minimised to find the best-fit combination of α and ζ for each waveband. This
minimum may or may not be co-located in the radio and γ-ray bands.

The purpose of our work is to find a combined γ-ray and radio fit, i.e. an (α ,ζ ) pair corre-
sponding to an adequate simultaneous radio and γ-ray fit. The standard approach to finding such a
combined fit is to add the separate radio and γ-ray χ2 maps, and then minimise the resultant. The
dependence of Pearson’s test statistic on observational uncertainties Ui creates problems, however.
In our case, the relative errors on the observed γ-ray data are much larger than they are on the radio
data, so that the typical values of χ2 are much smaller for the LC in the γ-ray domain than for the
radio domain. Simply adding the test statistics in the γ-ray and radio domains therefore creates a
combined χ2 map that is very much radio-dominated. When using this combined fitting method
it is therefore common to end up with a model fit that reproduces observed radio LC qualitatively
well (although not formally), but the observed γ-ray LC not at all.

2.3 The Scaled-Flux Normalised χ2 test statistic

It is clear that the Pearson χ2 test statistic’s dependence on observational data uncertainties
makes it ill suited for combining fits across data sets with disparate errors. For this reason Seyffert
et al. (2018; in preparation) developed an alternate test statistic which minimises the impact of
such data error disparities, called the Scaled-Flux Normalised (SFN; χ2

φ
) test statistic. The SFN

test statistic is defined as

χ
2
φ =

φ 2 −χ2

φ 2 −ndof
, (2.2)

where

φ
2 =

nbins

∑
i

(
Di −Bi

εi

)2

(2.3)

is effectively the value of Pearson’s χ2 test statistic for the background (off-peak) flux. The Di,
Bi, and εi are the observed flux, background flux, and error on the observed flux in the ith bin,
respectively. The test statistic’s name refers to the fact that it represents a normalised measure of
the goodness-of-fit of the "excess", non-background, flux.

It is instructive to consider the case of a very good match between modelled and observed LCs:
under these conditions χ2 ∼ ndof, so that the value of the test statistic will be approximately unity.
On the other end of the scale, e.g. in the case where the model predicts nothing but background
noise, χ2 ∼ φ 2, and thus the SFN test statistic approaches zero. A negative value (indicating a
worse fit than a flat model LC) is unlikely, and a value larger than one represents a suspicious
over-fit. Therefore the value of the SFN test statistic can be thought of as a normalised measure
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Figure 1: A two-dimensional representation of an nbins-dimensional space corresponding to nbins phase bins
of a pulsar LC. A representative model LC, observed LC, and background flux LC are represented by the
points M, D, and B in this space. Pearson’s χ2 test statistic measures the distance between M and D in this
space in units of observational errors, ε , and the SFN test statistic converts this distance into units of the
signal-to-noise ratio. The outer green circle centred on D represents the zero-value of the χ2

φ
test statistic,

and the inner circle represents its unity value. Note that for this figure we assumed equal errors in both phase
binds of the LC−in general each bin will have a slightly different relative error, and thus the inner boundary
will be irregularly shaped. See the text for details.

of goodness-of-fit, scaling from zero (no fit) to one (good fit). Maximising this test statistic across
all possible combinations of α and ζ results in the best possible estimation of a given pulsar’s
geometry.

The most crucial facet of the SFN test statistic is that it partially negates the problem presented
by comparisons between data sets with dissimilar errors. As opposed to Pearson’s test statistic,
which returns values that can vary greatly depending on the data errors, the SFN test statistic nearly
always returns values around the range of zero to one. This means that SFN test statistic values
are much more consistently comparable between data sets, regardless of uncertainties, than is the
case with Pearson’s test statistic, rendering any sort of error inflation or scaling unnecessary. Maps
of χ2

φ
can be simply added together, and the resultant will weigh each constituent approximately

equal, leading to a combined LC fit that ideally favours neither the radio nor the γ-ray fit.
Figure 1 presents a simple geometrical framework for thinking about test statistics that is

illustrative of the differences between Pearson’s χ2 test statistic and our SFN test statistic, and
why the latter is better suited to multiband LC fitting. One can envision an nbins-dimensional
space where each dimension corresponds to one of nbins phase bins into which a pulsar’s LC is
divided. The diagram in Figure 1 is a two-dimensional analogue of this space. Any particular LC
is represented by a single point in this space, e.g. a modelled LC M, an observed LC D, and a flat
background LC B as in the figure. Furthermore, we can construct vectors ~M, ~D, and ~B from the
origin to these points. Goodness-of-fit tests can be thought of as concerned with measuring and
comparing the length of and separation between such vectors in this space.

Pearson’s χ2 test statistic measures the distance between ~M and ~D in this space in units of~ε ,

4



P
o
S
(
H
E
A
S
A
2
0
1
7
)
0
1
8

A statistical approach to constraining pulsar geometry via dualband LC fitting Mechiel C. Bezuidenhout

the error on observations. It is valid to compare these "distances" from different model predictions
to a single set of observations (say, a radio LC), but these distances are not necessarily comparable
to distances from a second set of observations (say, a γ-ray LC). The difference in error values ε of
various observations mean that χ2 distances in this space are measured in different units, and thus
cannot be simply added.

The SFN test statistic scales the χ2 square of the distance between ~M and ~D to units of Φ,
the square of the distance between ~B and ~D, thus normalising this distance. We can draw two
concentric circles centred on ~D, as in green on the figure, the inner circle being defined by~ε , and
the outer circle by ~B. The closer ~M is to the outer circle, the closer χ2

φ
’s value is to zero; the closer

~M is to the inner circle, the closer χ2
φ

’s value is to one. This makes it clear that the SFN test statistic
is significantly less dependent on observational uncertainties, and that distances measured in this
way are more comparable between wavebands.

3. Results

In this section we relay the results we found by applying the LC fitting methods described
in the previous section to a selection of 16 pulsars. We fit LCs obtained using all four possible
combinations of the cone/core radio and TPC/OG geometrical γ-ray models to observed LCs from
the Second Fermi Pulsar Catalog [13]. Table 1 collates the (α,ζ ) constraints we found using by-
eye fitting, those we found using the SFN test statistic, and those found by the previous studies
through manipulation of Pearson’s χ2 for the same pulsars. The errors reported on the best-fit
(α,ζ ) combinations produced by SFN fitting were obtained through Monte Carlo error estimation.

Figure 2 plots the best-fit estimates for the tilt angle α for each sample pulsar found through
statistical fitting using the SFN test statistic against those found through by-eye fitting. Each colour
represents a different combination of radio and γ-ray models used to obtain the best-fit α . The
closer a point is to the diagonal on this plot, the greater the agreement is between the fit we found
by eye and that found using the SFN test statistic. In the legend of the figure, a value of Pearson’s
correlation coefficient, r, is assigned to every model combination. This is a measure of the corre-
lation between the two variables compared in the plot. This coefficient takes on values between
−1 and +1, where 1 indicates a total positive correlation, −1 a total negative correlation, and 0 no
correlation. Table 2 compiles values of r found when comparing the constraints found using each
fitting method and each possible combination of models.

4. Discussion

It is apparent from Figure 2 that although there is general agreement between the α constraints
we found using SFN fitting and those we found by eye, this correlation is fairly sensitive to the com-
bination of radio and γ-ray models employed. In particular, the combinations of the OG + Cone
models (blue) and TPC + Core models (red) produce a large number of outliers and significantly
lower values of r than is the case for the OG + Core (green) and TPC + Cone (yellow) combi-
nations. The former pair of model combinations also seem to produce fits with generally larger
error bars−perhaps indicative of a failure of these models to produce any one particularly good
candidate LC. It is important to bear in mind our the purpose for by-eye fitting as a "sanity check"
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OG + Cone OG + Core TPC + Cone TPC + Core

α ζ α ζ α ζ α ζ

SFN vs by eye 0.6640 0.7167 0.7756 0.7398 0.8918 0.8454 0.6213 0.6562
Other authors vs by-eye -0.0102 0.6371 0.1777 0.7380 0.6639 0.7623 0.5895 0.6299
SFN vs other authors 0.0108 0.7308 0.2143 0.7843 0.7629 0.8913 0.7803 0.9156

Table 2: Values of the Pearson’s correlation coefficient r for the α and ζ best-fit estimations found using all
different fitting methods and model combinations.

to ensure that statistical fitting methods are not producing qualitatively incredible fits. We would
suggest that the fact of broad accord between our SFN fits and by-eye fits supports the case of the
SFN fitting method as useful, at least in the sense that it does not demonstrate the opposite.

As is evident from Table 2, the fits found using Pearson’s χ2 test do not seem to correlate with
the by-eye fits as well as the SFN fits do for either α or ζ . While the lower correlation between
the by-eye fits and these authors’ fits does not necessarily establish the inadequacy of the fitting
methods they used, it does suggest that SFN fitting produces superficially better LC fits. Table 2
also demonstrates a general agreement between the constraints found using Pearson’s χ2 test and
our SFN fits for both parameters, besides two outliers, namely the α constraints found using the OG
+ Cone and the OG + Core combinations of models. It is telling to view these poor correlations in
the light of the similar lack of agreement between these α fits found by the other authors and those
we found by eye. This fact leads us to conclude that the previous authors’ α constraints found
using the OG γ-ray model might not be entirely trustworthy, and that their disaccord with what
we found through SFN fitting is not necessarily evidence of a problem with this fitting method.
Apart from these two outliers, however, there seems to be a strong correlation overall between the
parameter constraints we found using the SFN test statistic and those found by using Pearson’s χ2

Figure 2: Comparison of best-fit tilt angles (α) found using the SFN test statistic to those found by eye.
Each colour represents constraints found by employing a different combination of radio and γ-ray models.

7



P
o
S
(
H
E
A
S
A
2
0
1
7
)
0
1
8

A statistical approach to constraining pulsar geometry via dualband LC fitting Mechiel C. Bezuidenhout

test statistic.
Taken together, Tables 1 and 2 suggest that SFN pulsar LC fitting delivers best-fit LCs that are

more convincing to the eye−in both the radio and γ-ray bands simultaneously−than those produced
by the manipulation of Pearson’s χ2 test statistic as put into practice in previous studies.

5. Conclusions

Our aim was to test the utility of the novel SFN test statistic put forward by Seyffert et al.
(2018; in preparation) as it applies to dualband pulsar LC fitting. We believe, based on the corre-
lations laid out in Table 2, that the use of this test statistic results in LC fits that are more aligned
to what one typically finds through by-eye fitting than is the case with fits found through manipu-
lation of Pearson’s χ2 test statistic. As such, fitting using the SFN test statistic may be useful for
any further pulsar LC modelling efforts.

Future work may focus on applying this fitting method to LCs modelled using a variety of
different radio and γ-ray models, including the new dissipative γ-ray models (e.g. [14]), in order
to assess the merit of these models. This fitting procedure may also be extended to incorporate
different wavebands such as x-rays, or even to multiband fitting of pulsars’ spectra.
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