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Measurements of jets in heavy ion collisions
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The Quark-Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent
to electromagnetic probes but nearly opaque to colored probes. Hard partons produced early
in the collision fragment and hadronize into jets. The partons lose energy as they traverse the
medium. Most of the lost energy is still correlated with the parent parton, contributing to particle
production at larger angles and lower momenta relative to the parent parton than in proton-proton
collisions. This partonic energy loss can be measured through several observables, each of which
give different insights into the degree and mechanism of energy loss. The measurements to date
are summarized and the path forward is discussed.

12th International Workshop on High-pT Physics in the RHIC/LHC era,
October 2–5, 2017
University of Bergen, Norway

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:christine.nattrass@utk.edul


P
o
S
(
H
i
g
h
-
p
T
2
0
1
7
)
0
0
5

Measurements of jets Christine Nattrass

1. Introduction

A dense, hot liquid called the Quark Gluon Plasma (QGP) is formed in high energy heavy ion
collisions [1–4]. Hard partons scattered early in the collision traverse the medium and fragment
into collimated sprays of particles called jets. In principle, partonic energy loss can be used to
deduce the properties of the medium. The ultrarelativistic heavy ion community has accumulated
high quality data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) for nearly two decades. The wealth of data has given us many insights into partonic energy
loss in the QGP, but there is still work to be done. I first briefly review experimental results and
then discuss some of the challenges the community must address moving forward.

2. What we have learned

As partons traverse the medium, they lose energy either through collisional energy loss or
gluon bremsstrahlung. As a result, the parton shower is broader and the average momentum of
final state partons is lower than in p+p collisions. This process is frequently referred to as, “jet
quenching.” We recently reviewed the experimental evidence for jet quenching in [5]. The term
jet quenching may be misleading, since it implies that the energy from the hard parton is no longer
distinguishable from the background. Partonic energy loss results in fewer final state hadrons
which carry a high fraction of the parent parton’s momentum and therefore a suppression of high
momentum final state hadrons. Low momentum hadrons are enhanced and, unless the energy from
the jet reaches complete equilibrium with the medium, retain their spatial correlations with the jet
axis.
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Figure 1: Compilation of RAA from PHENIX (left) and the LHC (right) from [5].

The most straightforward way to quantify jet quenching is through the measurement of single
hadrons at high momentum. The scaled ratio of the transverse momentum spectra of single hadrons,
called the nuclear modification, is defined as

RAA =
σNN

〈Nbin〉
d2NAA/d pT dη

d2σpp/d pT dη
(2.1)
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Figure 2: Dihadron correlations with 4 < pt
T < 6 GeV/c and 2 < pa

T < 4 GeV/c from minimum bias d+Au
collisions at

√
sNN = 200 GeV from [6] and 0–10% collisions from [7] reanalyzed using both the Near-Side

Fit method described in [8] and the ZYAM method using v2 from [7] and v3 from [9] from a reanalysis
of [10] from in [11].

where η is the pseudorapidity, pT is the transverse momentum, 〈Nbin〉 is the average number of
binary nucleon-nucleon collisions for a given range of impact parameter, and σNN is the inte-
grated nucleon-nucleon cross section. RAA has been measured to high precision for several different
hadrons, shown in figure 1 for both

√
sNN = 200 GeV and

√
sNN = 2.76 TeV. Substantial suppres-

sion is observed for all hadrons and for leptons from the decays of heavy flavor hadrons. The JET
collaboration compared RAA to models systematically in order to constrain the jet transport coeffi-
cient q̂ = Q2/L [12], the transverse momentum lost to the medium (Q) squared divided by the path
length traversed by the parton. This calculation remains the best example of constraints on QGP
properties by studies of jet quenching.

Correlations between high momentum hadron pairs played a pivotal role in our understanding
of partonic energy loss as well, with nearly forty papers published by experimental collaborations
on dihadron correlations and over 760 citations for the first paper demonstrating that parton pairs
180◦ away from the trigger hadron are suppressed [10]. Since the publication of the original ob-
servation of jet quenching using dihadron correlations, we learned that a key component of the
background was omitted, triangular flow, v3 . These data were reanalyzed in [11] using our current
knowledge of the background, shown in figure 2. Fortunately for the field, the data are qualitatively
consistent with the earlier analysis.

Fully reconstructed jets have confirmed the picture of jet quenching developed in the RHIC
era based on single hadron spectra and dihadron correlations. Partonic energy loss has been ob-
served using di-jet asymmetries [13], γ-hadron correlations [14], γ-jet correlations [15],hadron-jet
correlations [16], and azimuthal anisotropies of jet spectra [17]. The broadening and softening
of the fragmentation function has been observed using dihadron correlations [18], γ-hadron cor-
relations [14], jet-hadron correlations [19], and fragmentation functions [20]. This qualitatively
confirms the picture of partonic energy loss through bremsstrahlung and collisional energy loss.
The amount of quantitative information about the properties of the plasma is unfortunately still
rather limited.

In an effort to best determine the properties of the medium from measurements of jets, the field
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recently investigating new observables which may be more sensitive to the jet structure [21–24].
The idea is that our traditional observables may not be the most sensitive to the physics we are
trying to learn.

3. What we should have learned

Even in elementary collisions where there is little or no background, jets are ambiguously de-
fined, even on the parton level. If a gluon is emitted at a small angle relative to a parent parton,
it is unclear if this parton is part of the jet or a jet itself. The choice is ultimately arbitrary. Early
measurements of jets used experimental algorithms which could not be reproduced reliably in the-
oretical calculations, for instance because they required a high momentum seed. This problem was
solved by a combination of the Snowmass Accord [25], an agreement that good jet finders should
be both theoretically and experimentally robust, and the development of a number of jet finding
algorithms which meet these requirements [26].

The presence of a large, fluctuating background in heavy ion collisions has led to the de-
velopment of several background subtraction and suppression algorithms, most of which include
kinematic requirements on jet constituents. None of the measurements of jet spectra in heavy ion
collisions meet the requirements laid out in the Snowmass Accord. The impact of the background
suppression and subtraction is usually corrected using PYTHIA [27] embedded into heavy ion
collisions. This makes the inherent assumption that PYTHIA jets are a good description of jets in
heavy ion collisions, even though we know that jets are modified through their interactions of the
medium. The modifications may not make an important impact on the experimental corrections,
but it is difficult quantify how interactions with the medium affect these corrections because there
are no models which incorporate all aspects of both the background and the jet signal.

Furthermore, experimental techniques to suppress and subtract background favor jets which
have hard, tightly collimated fragments. Most measurements therefore have a survivor bias and
therefore can only provide a partial picture. This can help explain some apparently contradictory
results, such as the tension between ALICE [28] and ATLAS [29] jet RAA at low momenta. The
appropriate treatment of background and the impact of bias on measurements is seldom discussed.

4. How we move forward

The JETSCAPE collaboration was formed to address the need for Monte Carlo models in-
corporating both realistic background and approaches to jet quenching. After incorporating jet
quenching into Monte Carlo models, a Bayesian analysis will be done to determine the model
parameters which best describe the data, similar to analyses in [30, 31] but incorporating measure-
ments of jets. This requires a detailed understanding of the measurements themselves, including
the treatment of background.

In [5] we proposed a meeting to discuss the treatment of background in theory and experiment.
This workshop will take place June 25-27, 2018 at BNL with the aim of reaching an agreement on
reasonable ways to treat background consistently in both theoretical calculations and experimental
measurements. The combination of these efforts will allow a deeper understanding of the medium
and provide guidance for future measurements. The development of realistic Monte Carlos by
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JETSCAPE will also allow realistic studies to determine which, if any, of the new observables cur-
rently being investigated are both robust in the presence of background and sensitive to the proper-
ties of the medium. Without a realistic and honest discussion about the treatment of background,
however, the quantitative limits measurements of jets can provide on properties of the medium will
be severely limited.

5. Conclusions

Over the last two decades, the wealth of data from RHIC and the LHC have qualitatively con-
firmed the picture of partonic energy loss in the medium through bremsstrahlung and collisional
energy loss. Systematic comparisons to single particle RAA provided constraints on q̂. The commu-
nity needs to constrain the properties of the medium better using the wealth of measurements. This
requires both the development and use of realistic Monte Carlo models and a thoughtful, careful
treatment of background in both experimental measurements.
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