

# Measurement of $\hat{q}$ in RHI collisions using di-hadron correlations

### M. J. Tannenbaum\*†

Physics Dept., 510c, Brookhaven National Laboratory, Upton, NY 11973-5000, USA *E-mail:* mjt@bnl.gov

In the BDMPSZ model, the energy loss of an outgoing parton in a medium -dE/dx is the transport coefficient  $\hat{q}$  times L the length traveled. This results in jet quenching, which is well established. However BDMPSZ also predicts an azimuthal broadening of di-jets also proportional to  $\hat{q}L$  which has so far not been observed. The azimuthal width of the di-hadron correlations in p+p collisions, beyond the fragmentation transverse momentum,  $j_T$ , is dominated by  $k_T$ , the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The broadening should produce a larger  $k_T$  in A+A than in p+p collisions. This presentation introduces the observation that the  $k_T$  measured in p+p collisions for di-hadrons with  $p_{T_t}$  and  $p_{T_a}$  must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the  $k_T$  measured with the same di-hadron  $p_{Tt}$  and  $p_{Ta}$  in A+A collisions. This idea is applied to a recent STAR di-hadron measurement in Au+Au at  $\sqrt{s_{NN}}$  =200 GeV, Phys. Lett. B 760, 689 (2016), with result  $\langle \hat{q}L \rangle = 2.1 \pm 0.6 \text{ GeV}^2$ . This is more precise but in agreement with a theoretical calculation of  $\langle \hat{q}L \rangle = 14^{+42}_{-14} \text{ GeV}^2$  using the same data. Assuming a length  $\langle L \rangle \approx 7 \text{ fm}$ for central Au+Au collisions the present result gives  $\hat{q} \approx 0.30 \pm 0.09$  GeV<sup>2</sup>/fm, in fair agreement with the JET collaboration result from single hadron suppression of  $\hat{q} \approx 1.2 \pm 0.3$  GeV<sup>2</sup>/fm at an initial time  $\tau_0 = 0.6$  fm/c in Au+Au collisions at  $\sqrt{s_{NN}} = 200$  GeV. There are several interesting details to be discussed: for a given  $p_{Tt}$  the  $\langle \hat{q}L \rangle$  seems to decrease then vanish with increasing  $p_{Ta}$ ; the di-jet spends a much longer time in the medium ( $\approx 7$  fm/c) then  $\tau_0 = 0.6$  fm/c which likely affects the value of  $\hat{q}$  that would be observed.

12th International Workshop on High-pT Physics in the RHIC/LHC Era 2-5 October, 2017 University of Bergen, Bergen, Norway

\*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

<sup>&</sup>lt;sup>†</sup>Supported by U. S. Department of Energy, Contract No. DE-SC0012704.

#### 1. Jet Quenching: the first QCD based prediction BDMPSZ [1]

The first prediction of how to detect the QGP was via  $J/\Psi$  suppression [2] in 1986. However the first QCD based prediction for detecting the QGP was BDMPSZ Jet Quenching [1]. This is produced by the energy loss, via LPM coherent radiation of gluons, of an outgoing parton with color charge fully exposed in a medium with a large density of similarly exposed color charges (i.e. the QGP) (Fig. 1a). Jet quenching was observed quite early at RHIC by suppression of high  $p_T$  $\pi^0$  [3], with lots of subsequent evidence (Fig. 1b). It is interesting to note that all identified hadrons generally have different  $R_{AA}$  for  $p_T \leq 5$  GeV/c but tend to converge to the same value for  $p_T \gtrsim 5$ GeV/c. The fact that direct- $\gamma$  are not suppressed indicates that suppression is a medium effect on outgoing color-charged partons as predicted by BDMPSZ [1].



**Figure 1:** a) Schematic of q+q scattering with scattered quarks losing energy in the medium. b) Suppression,  $R_{AA}(p_T)$ , for all identified particles so far measured by PHENIX in Au+Au central collisions at  $\sqrt{s_{NN}} = 200$  GeV.

#### 1.0.1 But the BDMPSZ model has two predictions

(I) The energy loss of the outgoing parton, -dE/dx, per unit length (x) of a medium with total length L, is proportional to the total 4-momentum transfer-squared,  $q^2(L)$ , with the form:

$$\frac{-dE}{dx} \simeq \alpha_s \langle q^2(L) \rangle = \alpha_s \, \mu^2 L / \lambda_{\rm mfp} = \alpha_s \, \hat{q} \, L \tag{1.1}$$

where  $\mu$ , is the mean momentum transfer per collision, and the transport coefficient  $\hat{q} = \mu^2 / \lambda_{mfp}$  is the 4-momentum-transfer-squared to the medium per mean free path,  $\lambda_{mfp}$ .

(II) Additionally, the accumulated momentum-squared,  $\langle p_{\perp W}^2 \rangle$  transverse to a parton traversing a length *L* in the medium is well approximated by

$$\langle p_{\perp W}^2 \rangle \approx \langle q^2(L) \rangle = \hat{q}L \quad \text{so that} \quad \langle \hat{q}L \rangle / 2 = \langle k_T^2 \rangle_{AA} - \langle k_T'^2 \rangle_{pp}$$
(1.2)

since only the component of  $\langle p_{\perp W}^2 \rangle \perp$  to the scattering plane affects  $k_T$ . This is called azimuthal broadening. Here (see Fig. 2)  $k_T$  denotes the intrinsic transverse momentum of a parton in a proton plus any medium effect and  $k'_T$  denotes the reduced value correcting for the lost energy of the scattered partons in the QGP, a new idea this year [4].



**Figure 2:** Initial configuration: trigger jet  $\hat{p}_{Tt}$ , associated (away) jet  $\hat{p}_{Ta}$  with  $k_T$  effect (dashed arrow) and fragments  $p_{Tt}$  and  $p_{Ta}$ , with fragmentation transverse momentum  $j_{Ty}$ , and  $p_{out} = p_{Ta} \sin(\pi - \Delta \phi)$ .

Even though jet quenching has been established and confirmed for more than 15 years, many experiments have tried to find azimuthal broadening at RHIC e.g. Fig. 3 [5], [6], but have not been able to observe the effect because of systematic uncertainties.



**Figure 3:** a) STAR measurement of the Gaussian widths  $\sigma_{AS}$  of away-side hadron peaks triggered by a jet in collisions of Au+Au (solid symbols) and p+p (open symbols) at  $\sqrt{s_{NN}} = 200 \text{ GeV} [5]$ . b) Away-peaks in STAR di-jet measurement for two  $\hat{p}_{Tt}$  ranges in Au+Au at  $\sqrt{s_{NN}} = 200 \text{ GeV}$ : (left) peripheral, (right) central collisions, with the same  $\sigma$  [6].

#### **1.1** Understanding $k_T$ and $k'_T$ .

Following the methods of Feynman, Field and Fox [7], CCOR [8] and PHENIX [9], the  $\langle k_T^2 \rangle$  for di-hadrons is computed from Fig. 2 as:

$$\sqrt{\langle k_T^2 \rangle} = \frac{\hat{x}_h}{\langle z_t \rangle} \sqrt{\frac{\langle p_{\text{out}}^2 \rangle - (1 + x_h^2) \langle j_T^2 \rangle / 2}{x_h^2}}$$
(1.3)

where  $p_{Tt}$ ,  $p_{Ta}$  are the transverse momenta of the trigger and away particles,  $x_h = p_{Ta}/p_{Tt}$ ,  $\Delta\phi$ is the angle between  $p_{Tt}$  and  $p_{Ta}$  and  $p_{out} \equiv p_{Ta} \sin(\pi - \Delta\phi)$ . The di-hadrons are assumed to be fragments of jets with transverse momenta  $\hat{p}_{Tt}$  and  $\hat{p}_{Ta}$  with ratio  $\hat{x}_h = \hat{p}_{Ta}/\hat{p}_{Tt}$ .  $z_t \simeq p_{Tt}/\hat{p}_{Tt}$  is the fragmentation variable, the fraction of momentum of the trigger particle in the trigger jet.  $j_T$ is the jet fragmentation transverse momentum and we have taken  $\langle j_{Tay}^2 \rangle \equiv \langle j_{Ta\phi}^2 \rangle = \langle j_{Tt\phi}^2 \rangle = \langle j_T^2 \rangle/2$ . The variable  $x_h$  (which STAR calls  $z_T$ ) is used as an approximation of the variable  $x_E = x_h \cos(\pi - \Delta\phi)$  from the original terminology at the CERN ISR where  $k_T$  was discovered and measured 40 years ago. A recent STAR paper [10] on  $\pi^0$ -hadron correlations in  $\sqrt{s_{NN}} = 200 \text{ GeV Au}+\text{Au} 0.12\%$  central collisions had very nice correlation functions for large enough  $12 \le p_{Tt} \le 20 \text{ GeV/c}$  so that the  $v_2$ ,  $v_3$  modulation of the background was negligible (Fig. 4). I made fits to these data [4] to determine  $\langle p_{out}^2 \rangle$  so that I could calculate  $k_T$  in p+p and Au+Au using Eq. 1.3. The results for  $3 \le p_{Ta} \le 5.0 \text{ GeV/c}$  were  $\sqrt{\langle k_T^2 \rangle} = 2.5 \pm 0.3 \text{ GeV/c}$  for p+p and  $\sqrt{\langle k_T^2 \rangle} = 1.4 \pm 0.2 \text{ GeV/c}$ , for Au+Au, exactly the opposite of azimuthal broadening (Eq. 1.2)!



**Figure 4:** Fits [4] to STAR  $\pi^0$ -hadron correlation functions [10]: Gaussian in  $\Delta \phi$  on trigger side ( $\Delta \phi \approx 0$ ), and Gaussian in  $p_{out}$  on away-side with fitted values of  $\langle p_{out}^2 \rangle$  indicated.

After considerable thought, I finally figured out what the problem was and introduced the new  $k'_T$  [4]. For a di-jet produced in a hard scattering, the initial  $\hat{p}_{Tt}$  and  $\hat{p}_{Ta}$  (Fig. 2) will both be reduced by energy loss in the medium to become  $\hat{p}'_{Tt}$  and  $\hat{p}'_{Ta}$  which will be measured by the di-hadron correlations with  $p_{Tt}$  and  $p_{Ta}$  in Au+Au collisions. The azimuthal angle between the di-jets, determined by the  $\langle k_T^2 \rangle$  in the original collision, should not change as both jets lose energy unless the medium induces multiple scattering from  $\hat{q}$ . Thus, without  $\hat{q}$  and assuming the same fragmentation transverse momentum  $\langle j_T^2 \rangle$  in the original jets and those that have lost energy, the  $p_{out}$  between the away hadron with  $p_{Ta}$  and the trigger hadron with  $p_{Tt}$  will not change; but the  $\langle k_T^2 \rangle$  will be reduced because the ratio of the away to the trigger jets  $\hat{x}'_h = \hat{p}'_{Ta}/\hat{p}'_{Tt}$  will be reduced. Thus the calculation of  $k'_T$  from the di-hadron p+p measurement to compare with Au+Au measurement to compensate for the energy lost by the original dijet in p+p collisions.

The same values of  $\hat{x}_h$ , and  $\langle z_t \rangle$  in Au+Au and p+p simplify Eqs. 1.2 and 1.3 to:

$$\left\langle \hat{q}L \right\rangle / 2 = \left[\frac{\hat{x}_h}{\left\langle z_t \right\rangle}\right]_{AA}^2 \left[\frac{\left\langle p_{\text{out}}^2 \right\rangle_{AA} - \left\langle p_{\text{out}}^2 \right\rangle_{pp}}{x_h^2}\right] \tag{1.4}$$

from which one could immediately get a reasonable answer for  $\langle \hat{q}L \rangle / 2$  from the  $\langle p_{out}^2 \rangle$  results indicated on Fig. 4 if the values of  $\hat{x}_h$  and  $\langle z_t \rangle$  in the Au+Au measurement are known.

## 2. How to calculate $\langle \hat{q}L \rangle$ from the Au+Au (and p+p) measurements for di-hadrons with a trigger $p_{Tt}$ and away-side $p_{Ta}$ distribution.

From Eq. 1.4, we need  $\langle p_{out}^2 \rangle_{pp}$ ,  $\langle p_{out}^2 \rangle_{AA}$  plus  $\hat{x}_h$  and  $\langle z_t \rangle$  in Au+Au. This will be illustrated with the STAR data [10].

a)  $\hat{x}_h$  for a given  $p_{Tt}$  can be calculated from the  $p_{Ta}$  distribution: The ratio of the away jet to the trigger jet transverse momenta,  $\hat{x}_h = \hat{p}_{Tt}/\hat{p}_{Ta}$ , can be calculated (Fig. 5) from the away particle  $x_h = p_{Ta}/p_{Tt}$  distributions, which were also given in the STAR paper. The formula is [9], where *n* is the power of the  $p_T$  spectra:

$$\left. \frac{dP}{dp_{Ta}} \right|_{p_{Tt}} = N\left(n-1\right) \frac{1}{\hat{x}_h} \frac{1}{\left(1+\frac{x_h}{\hat{x}_h}\right)^n} \qquad (2.1)$$



**Figure 5:** a) Plots of Eq. 2.1 for the values of  $\hat{x}_h$  indicated. b) Fits of Eq. 2.1 [4] to the STAR away-side  $z_T$  distributions [10] in Au+Au 0-12% centrality, and p+p, for  $12 < p_{Tt} < 20$  GeV/c. The Au+Au curve is a fit with  $\hat{x}_h^{AA} = 0.36 \pm 0.05$  with error corrected by  $\sqrt{\chi^2/\text{dof}}$ . The points with the open circles are the  $y_i$  and systematic errors  $\sigma_{b_i}$  of the data points while the filled points are  $y_i + \varepsilon_b \sigma_{b_i}$  with errors  $\tilde{\sigma}_i$  and  $\varepsilon_b = -1.3 \pm 0.5$ . [4]

- b) Fit the away-side peaks in the Au+Au and p+p correlation functions to gaussians in  $\mathbf{p}_{out}$ : The gaussian fit directly gives  $\langle p_{out}^2 \rangle$  as was nicely shown for the STAR data in Fig. 4.
- c) The power of hard scattering: the Bjorken parent-child relation and "trigger bias": The hard-scattering  $p_T$  spectra,  $d\sigma/p_T dp_T$ , at RHIC in the range  $3 \le p_T \le 20$  GeV/c for p+p

and Au+Au for all centralities follow the same power law  $1/p_T^n$  with  $n = 8.10 \pm 0.05$  [11]. This is why  $R_{AA}(p_T)$  for  $\pi^0$  and  $\eta$  in Fig. 1b are relatively constant over the same  $p_T$  range. The Bjorken parent-child relation [12] proved that the power n in  $p_T^{-n}$  is the same in the jet and fragment ( $\pi^0$ )  $p_T$  spectra. This is why  $\pi^0$  can be used in place of the parent jet. However because the trigger  $\pi^0$  spectrum for a given  $p_{Tt}$  in Au+Au for 0–10% centrality is shifted down by  $\delta p_T/p_T^{pp} = 20\%$  in  $p_T$  compared to p+p [13], the  $\langle z_t \rangle$  for A+A and compensated p+p should be calculated [9] from the measured p+p  $\pi^0 p_T$  spectrum at  $p_{Tt}^{pp}/(1 - \delta p_T/p_T^{pp})$ . (For the present discussion, STAR measured  $\langle z_t \rangle = 0.80 \pm 0.05$  from their p+p data [10].)

This method enabled me to calculate  $\langle \hat{q}L \rangle$  from the  $\langle p_{out}^2 \rangle$  values indicated on Fig. 4, now with sensible results (Table 1). The results in the two  $p_{Ta}$  bins are at the edge of agreement, different by 2.4 $\sigma$ ; but both are > 2.6 $\sigma$  from zero. These results leave several open issues as mentioned in the abstract.

| <b>Table 1:</b> Tabulations for $\hat{q}$ [4] from STAR $\pi^0$ -h data [10] |                          |                          |                                                |                                                     |                           |
|------------------------------------------------------------------------------|--------------------------|--------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------|
| $\sqrt{s_{_{NN}}} = 200 \text{GeV}$                                          | $\langle p_{Tt} \rangle$ | $\langle p_{Ta} \rangle$ | $\sqrt{\left\langle k_T^2 \right\rangle}_{AA}$ | $\sqrt{\left\langle k'_{T}^{2}\right\rangle }_{pp}$ | $\langle \hat{q}L  angle$ |
| Reaction                                                                     | GeV/c                    | GeV/c                    | GeV/c                                          | GeV/c                                               | GeV <sup>2</sup>          |
| Au+Au 0-12%                                                                  | 14.71                    | 1.72                     | $2.28\pm0.35$                                  | $1.01\pm0.18$                                       | $8.41 \pm 2.66$           |
| Au+Au 0-12%                                                                  | 14.71                    | 3.75                     | $1.42 \pm 0.22$                                | $1.08\pm0.18$                                       | $1.71 \pm 0.67$           |

#### 3. Homework

However there is a nice prediction of  $\Delta \phi$  for for 35 GeV Jets at RHIC [14] for several values of  $\langle \hat{q}L \rangle$  (Fig. 6). An amusing test would be to see if the present method gives the same answers for  $\langle \hat{q}L \rangle$  by calculating  $\langle p_{out}^2 \rangle$  of the predictions.



**Figure 6:** Prediction by Al Mueller and collaborators [14] of the di-jet azimuthal decorrelation as a function of  $\hat{q}L$  for a) 35 GeV jets at RHIC  $\sqrt{s_{NN}} = 200$  GeV; and b) 50 GeV jets at the LHC  $\sqrt{s_{NN}} = 2.76$  TeV where " $p_T$  broadening effects are negligible" [14].

#### References

- R. Baier, D. Schiff and B. G. Zakharov, *Energy Loss in Perturbative QCD*, Ann. Rev. Nucl. Part. Sci. 50, 37–69 (2000) [hep-ph/0002198].
- [2] T. Matsui and H. Satz, J/Ψ Suppression by Quark-Gluon Plasma Formation, Phys. Lett. B 178, 416–422 (1986).
- [3] K. Adcox *et al.* (PHENIX), Suppression of Hadrons with Large Transverse Momentum in Central Au + Au Collisions at  $\sqrt{s_{NN}} = 130 \text{ GeV}$ , Phys. Rev. Lett. **88**, 022301 (2002) [nucl-ex/0109003].
- [4] M. J. Tannenbaum, Measurement of \u00e3 in Relativistic Heavy Ion Collisions using di-hadron correlations, Phys. Lett. B 771, 553–557 (2017) [arXiv:1702.00840]
- [5] L. Adamczyk *et al.* (STAR), *Jet-Hadron Correlations in*  $\sqrt{s_{NN}} = 200 \text{ GeV } p + p$  and Au+Au Collisions, Phys. Rev. Lett. **112**, 122301 (2014) [arXiv:1302.6184]
- [6] P. M. Jacobs, A. Schmah et al. (STAR), Measurements of jet quenching with semi-inclusive charged jet distributions in Au+Au collisions at  $\sqrt{s_{NN}} = 200 \text{ GeV}$ , Nucl. Phys. A **956**, 641–644 (2016) [arXiv:1512.08784]
- [7] R. P. Feynman, R. D. Field and G. C. Fox, Correlations Among Particles and Jets Produced with Large Transverse Momenta, Nucl. Phys. B 128, 1–65 (1977).
- [8] A. L. S. Angelis, et al. (CCOR), A Measurement of the Transverse Momenta of Partons, and of Jet Fragmentation as a Function of  $\sqrt{s}$  in pp Collisions, Phys. Lett. B 97, 163–168 (1980).
- [9] S. S. Adler, et al. (PHENIX), Jet properties from dihadron correlations in p+p collisions at  $\sqrt{s} = 200$  GeV, Phys. Rev. D 74, 072002 (2006) [hep-ex/0605039].
- [10] L. Adamczyk et al. (STAR), Jet-like correlations with direct-photon and neutral-pion triggers at  $\sqrt{s_{NN}} = 200 \text{ GeV}$ , Phys. Lett. B 760, 689–696 (2016) [arXiv:1604.01117].
- [11] A. Adare, et al. (PHENIX). Suppression Pattern of Neutral Pions at High Transverse Momentum in Au+Au Collisions at  $\sqrt{s_{NN}} = 200 \text{ GeV}$  and Constraints on Medium Transport Coefficients Phys. Rev. Lett. **101**, 232301 (2008) [arXiv:0801.4020]
- [12] M. Jacob and P. V. Landshoff, Large Transverse Momentum and Jet Studies Phys. Repts. 48, 285–350 (1978).
- [13] A. Adare, *et al.* (PHENIX). Neutral pion production with respect to centrality and reaction plane in Au + Au collisions at  $\sqrt{s_{NN}} = 200$  GeV. Phys. Rev. C 87, 034911 (2013) [arXiv:1208.2254]
- [14] A. H. Mueller, et al. Probing transverse momentum broadening in heavy ion collisions. Phys. Lett. B 763, 208–212 (2016). [arXiv:1604.04250]