

Search for a W' decaying to $t\bar{b}$ in the lepton plus jets final state with the ATLAS detector using 36.1 fb⁻¹ of pp collision data at \sqrt{s} = 13 TeV

Marija Marjanović*, on behalf of the ATLAS Collaboration

Laboratoire de Physique de Clermont Université Clermont Auvergne, CNRS/IN2P3 Aubière, France E-mail: marija.marjanovic@cern.ch

> A search for new charged massive gauge bosons, called W', decaying to $t\bar{b}$, is performed with the ATLAS detector in the decay channel leading to final states with an electron or muon, 2 or 3 jets and missing transverse momentum. This search uses a dataset corresponding to an integrated luminosity of 36.1 fb⁻¹ of *pp* collisions produced at the LHC and collected during 2015 and 2016. The data is found to be consistent with the Standard Model expectation. Therefore limits are set on the $W' \rightarrow t\bar{b}$ cross section times branching ratio and on the W' boson effective couplings as a function of the W' boson mass.

Sixth Annual Conference on Large Hadron Collider Physics (LHCP2018) 4-9 June 2018 Bologna, Italy

*Speaker.

[©] Copyright CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

1. Motivation

Many theories of new physics introduce new heavy charged gauge bosons, usually referred to as W'. For example they are predicted by Kaluza- Klein [1] excitations of the Standard Model (SM) W boson or in models that extend the fundamental symmetries of the SM and propose a massive right-handed counterpart to the W boson [2]. This search [3] for a W' boson decaying into a top quark and a \bar{b} -quark (illustrated in Figure 1 on the left) performed with the ATLAS detector [4] considers only W' bosons with right-handed couplings (W'_R).

2. Event reconstruction and signal selection efficiency

The W'_R boson search is performed in the semileptonic decay channel so the final-state signature consists of two *b*-quarks, one charged lepton and a neutrino, which is undetected and results in missing transverse momentum, E_T^{miss} . The dominant background processes are the production of W/Z+jets, single top quarks, $t\bar{t}$ pairs and dibosons, all modelled with Monte Carlo (MC) simulated events. An instrumental background due to multijet production, where a hadronic jet is misidentified as a lepton, is also present and it is derived using data.

The reconstruction of the W' candidate starts with the calculation of the z component of the neutrino momentum from the invariant mass of the lepton– E_T^{miss} system with the constraint that $m_W = 80.4$ GeV. The four-momentum of the top-quark candidate is reconstructed by adding the four-momenta of the W-boson candidate and of the jet, that yields the invariant mass closest to the top-quark mass. This jet is referred to as " b_{top} ". Finally, the four-momentum of the candidate W' boson is reconstructed by adding the four-momentum of the reconstructed top-quark candidate and the four-momentum of the highest- p_T remaining jet (referred to as " b_1 "). The invariant mass of the reconstructed W' $\rightarrow t\bar{b}$ system ($m_{t\bar{b}}$) is the discriminating variable of this search.

The phase space is divided into a signal region (SR), a validation region enriched with the W+jets background (VR_{pretag}), a validation region enriched with the $t\bar{t}$ background (VR_{$t\bar{t}$}), and a validation region enriched with the W+heavy-flavour jets background (VR_{HF}). The signal and validation regions are defined by the number of jets and*b*-tagged jets, and are labelled as "*X*-jet*Y*-tag" where <math>X = 2,3,4 and Y = 1,2. They are further separated into electron and muon channel. The pretag region has no requirement on the number of *b*-tagged jets. The event selection criteria for each region are summarized in Table 1. Figure 2 shows the distributions of the reconstructed invariant mass of the W' boson candidate in the 2-jet 1-tag VR_{HF} and 4-jet 2-tag VR_{$t\bar{t}$} regions.</sub></sub>

The signal selection efficiency (defined as the number of events passing all selection requirements divided by the total number of simulated $W' \rightarrow t\bar{b} \rightarrow \ell v b\bar{b}$ events) in the signal region is shown, as a function of the simulated W'_R mass, in Figure 1 on the right. The application of the *b*-tagging requirement has a larger impact on the signal efficiency at high W'_R boson mass values. In the electron channel the electron-jet overlap criterion does not allow the electron to be close $(\Delta R(\ell, jet) < 0.4)$ to the jet. In the muon channel, this criterion is relaxed by using a variable ΔR cone size, resulting in an improved signal acceptance.

3. Results and interpretations

In order to test for the presence of a massive resonance, the $m_{t\bar{b}}$ templates obtained from the

Common selection								
$p_{\rm T}(\ell) > 50 {\rm ~GeV}, p_{\rm T}(b_1) > 200 {\rm ~GeV}, p_{\rm T}({\rm top}) > 200 {\rm ~GeV}$								
$E_{\rm T}^{\rm miss} > 30 \ (80) \ {\rm GeV}, \ m_{\rm T}^W + E_{\rm T}^{\rm miss} > 100 \ {\rm GeV}$								
Signal Region	VR _{pretag}	$VR_{t\bar{t}}$	VR _{HF}					
2 or 3 jets	2 or 3 jets	4 jets	2 or 3 jets					
1 or 2 <i>b</i> -jets	pretag	1 or 2 <i>b</i> -jets	1 <i>b</i> -jet					
$\Delta R(\ell, b_{\text{top}}) < 1.0$			$\Delta R(\ell, b_{\rm top}) > 2.0$					
$m_{tb} > 500 \text{ GeV}$			$\Delta R(b_1, b_{top}) > 1.5$					

Table 1:	Summary of the event sel	lection criteria used	to define signal	and validation	regions [3].	The E_T^{miss}
selection	cut is harder for events wi	th electrons than w	ith muons.			

Figure 1: On the left, Feynman diagram for W' boson production with the subsequent decay into $t\bar{b}$ and a leptonically decaying top quark. On the right, signal selection efficiencies are shown [3].

signal and background simulated event samples are fit to data in the SR using a binned maximumlikelihood approach. Each signal region is considered simultaneously as an independent search channel, for a total of eight regions corresponding to mutually exclusive categories of electron and muon, 2-jet and 3-jet, and 1-*b*-tag and 2-*b*-tags.

The normalizations of the $t\bar{t}$ and W+jets backgrounds are free parameters in the fit. The systematic uncertainties are incorporated in the fit as nuisance parameters with correlations across regions and processes taken into account. The fitted $t\bar{t}$ and W+jets rates relative to their nominal predictions are found to be 0.98 ± 0.04 and 0.78 ± 0.19 , respectively. Figure 3 presents the post-fit distributions of the reconstructed mass of the W'_R boson candidate in the 2-jet 1-tag signal regions, for (left) electron and (right) muon channel.

For a W'_R boson with a mass of 2 TeV the total expected uncertainty in estimating the signal strength¹ is 12%. The total systematic uncertainty is 9%, and the largest uncertainties are due to the $t\bar{t}$ generator and jet energy scale uncertainties. For resonances with a mass of 2.5 TeV or above,

¹The signal strength is defined as the ratio of the signal cross section estimated using the data to the predicted signal cross section.

Figure 2: Distributions of the reconstructed invariant mass of the W' boson candidate in the 2-jet 1-tag VR_{HF} and 4-jet 2-tag $VR_{t\bar{t}}$ validation regions [3]. Uncertainty bands include all the systematic and statistical uncertainties.

the data Poisson uncertainty becomes the largest uncertainty, while the total systematic uncertainty is dominated by the uncertainty on the *b*-tagging efficiency.

Figure 3: Post-fit distributions of the reconstructed mass of the W'_R boson candidate in the 2-jet 1-tag signal regions, for (left) electron and (right) muon channel [3]. Uncertainty bands include all the systematic and statistical uncertainties.

As no significant excess over the background prediction is observed, upper limits at the 95% confidence level (CL) are set. The limits on the production cross section multiplied by the branching fraction for $W'_R \rightarrow t\bar{b}$ are shown in Figure 4 as a function of the resonance mass. The exclusion limits range between 4.9 pb and 2.9×10^{-2} pb for W'_R boson masses from 0.5 TeV to 5 TeV.

Limits on the ratio of couplings g'/g as a function of the W'_R boson mass can be derived from the limits on the W'_R boson cross section. Figure 4 on the right shows the excluded parameter space as a function of the W'_R resonance mass, wherein the effect of increasing W'_R width for coupling values of g'/g > 1 is included for signal acceptance and differential distributions. The lowest observed (expected) limit on g'/g, obtained for a W'_R boson mass of 0.75 TeV, is 0.13 (0.13).

Figure 4: On the left, upper limits at the 95% CL on the W'_R production cross section times branching fraction as a function of resonance mass, assuming g'/g = 1 [3]. The solid curve corresponds to the observed limit, while the dashed curve and shaded bands correspond to the limit expected in the absence of signal and the regions enclosing one/two standard deviation (s.d.) fluctuations of the expected limit. The prediction made by the benchmark model generator ZTOP [5], and its width that correspond to variations due to scale and PDF uncertainty, are also shown. On the right, observed and expected 95% CL limit on the ratio g'/g, as a function of resonance mass, for right-handed W' coupling. The filled area corresponds to the observed limit while the dashed line and the one standard deviation (s.d.) band correspond to the expected limit.

4. Conclusion

A search for $W'_R \to t\bar{b}$ in the lepton plus jets final state is performed using 36.1 fb⁻¹ of pp collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC. No significant excess of events is observed above the SM predictions, so the upper limits are placed at the 95% CL on the cross section times branching fraction and masses below 3.15 TeV are excluded for W'_R bosons. Exclusion limits are also calculated for the ratio of the couplings g'/g and the lowest observed limit, obtained for a W'_R boson mass of 0.75 TeV, is 0.13.

References

- G. Burdman, B. A. Dobrescu and E. Ponton, "Resonances from two universal extra dimensions," Phys. Rev. D 74, 075008 (2006) [hep-ph/0601186].
- [2] J. C. Pati and A. Salam, "Lepton Number as the Fourth Color," Phys. Rev. D 10, 275 (1974) Erratum: [Phys. Rev. D 11, 703 (1975)].
- [3] ATLAS Collaboration, "Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector," [arXiv:1807.10473 [hep-ex]].
- [4] ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider," JINST **3**, S08003 (2008).
- [5] D. Duffty and Z. Sullivan, "Model independent reach for W-prime bosons at the LHC," Phys. Rev. D 86, 075018 (2012) [arXiv:1208.4858 [hep-ph]].