Search for pair- and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at $\sqrt{s} = 13\,\text{TeV}$

Elena Freundlich*,†, On behalf of the ATLAS Collaboration

Technische Universität Dortmund
E-mail: elena.freundlich@cern.ch

A search for pair- and single-production of vector-like quarks T and B with a leptonically decaying Z boson is presented. The data were collected in pp collisions at $\sqrt{s} = 13\,\text{TeV}$ with the ATLAS detector at the LHC, corresponding to an integrated luminosity of $36.1\,\text{fb}^{-1}$. Final states are required to contain a Z boson reconstructed from a same-flavor pair of leptons with opposite electric charge and a third generation quark. The analysis targets both pair- and single-production of vector-like quarks and no excess above the Standard Model expectation is found. Lower mass limits on vector-like T and B quarks at 95% confidence level are derived and limits on the coupling to Standard Model quarks are set for single-production.
1. Introduction

When searching for physics beyond the Standard Model (SM), Composite Higgs [1, 2] and Little Higgs [3, 4] models play an important role. These models predict vector-like quarks, whose right- and left-handed parts have the same transformation properties with respect to the weak isospin group SU(2). This analysis [5] at the ATLAS experiment [6] at the LHC focuses on the search for pair- and single-production of vector-like T and B quarks with charges $q_T = \frac{2}{3}e$ and $q_B = -\frac{1}{3}e$. For the vector-like quark decays the assumption is made that only decays to a W, Z or H boson and a third generation quark are possible. The final state is required to contain a Z boson reconstructed from a lepton pair $\ell^+ \ell^-$ ($\ell = e, \mu$). Figure 1 shows Feynman diagrams for both processes under study, one mediated by the weak and one by the strong force.

![Feynman diagrams](image)

Figure 1: Feynman diagrams for single-production (left) and pair-production (right) of vector-like quarks with at least one Z boson in the final state.

2. Analysis strategy

The final states presented in Figure 1 contain different multiplicities of leptons, large-R jets with radius $R = 1.0$, b-tagged small-R jets with $R = 0.4$ and high-p_T objects alongside other discriminating features.

![Normalized distributions](image)

Figure 2: Normalized distributions of the lepton multiplicity, the number of b-tagged jets, the large-R jet multiplicity and the forward jet multiplicity (from left to right) [5].

Figure 2 shows the distributions used for splitting the analysis into three orthogonal channels for pair-production, while there are two different channels for single-production. Channels with two leptons have a higher signal efficiency, while the background rejection is better for channels with at least three leptons. A requirement of at least one b-tagged small-R jet rejects a lot of background and can be extended to at least two for channels with a large number of events. Furthermore, the number of large-R jets discriminates well between signal and background and is used in the pair-production (PP) dilepton (2ℓ) channels. For the single-production channels, the number
of forward jets is required to be at least one, removing a substantial amount of background. To summarize, five different channels are defined: These are PP 2ℓ with ≤ 1 large-R jet or ≥ 2 large-R jets, PP $\geq 3\ell$, and for single-production (SP) 2ℓ and $\geq 3\ell$. The main backgrounds are Z+jets (PP 2ℓ 0-1J, PP 2ℓ 2J, SP 2ℓ), $t\bar{t}$ (PP 2ℓ 0-1J, PP 2ℓ 2J), $t\bar{t}+X$ (PP 2ℓ 2J, PP $\geq 3\ell$, SP 2ℓ, SP $\geq 3\ell$) and diboson events (PP $\geq 3\ell$, SP 2ℓ, SP $\geq 3\ell$).

Five channels are optimized individually and a final discriminant is chosen. Either the reconstructed vector-like quark mass m_{Zb} or m_{Zb} or a scalar sum of object momenta is chosen (H_T for jets and S_T for leptons+jets). In Figure 3 and Figure 4 the final discriminants for each channel are illustrated. Data and Monte Carlo expectation agree well within the uncertainties.

Each discriminant is used in a statistical analysis in order to test for a discovery or set limits on the vector-like quark mass or the production cross-section times branching ratio $\sigma \times BR$. For the statistical analysis a binned profile likelihood fit is used based on the CL_s method.

![Figure 3: Final discriminants for the PP 2ℓ channels showing H_T (left and center) and m_{Zb} (right) [5].](image1)

![Figure 4: Final discriminants for the PP $\geq 3\ell$ channel (left) and for the single-production dilepton (center) and trilepton (right) channels [5].](image2)

3. Results

After performing the profile likelihood fit with all systematic uncertainties taken as nuisance parameters, no significant excess above the SM expectation is observed. Therefore, 95% confi-
dence level (CL) limits are derived on $\sigma \times BR$ and the couplings to the SM quarks. In Table 5 the limits for PP are listed for the doublet models (with $BR(T/B \rightarrow t/b) = 50\%$).

Instead of focusing on a specific signal model the whole branching ratio plane can be scanned under the assumption that all BRs add up to one. Figure 6 shows this scan and clearly illustrates the largest sensitivity in the Z corner.

<table>
<thead>
<tr>
<th>Model</th>
<th>$2\ell \ 0\text{-}1\text{J}$</th>
<th>$2\ell \geq 2\text{J}$</th>
<th>$\geq 3\ell$</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT doublet</td>
<td>820 GeV</td>
<td>1100 GeV</td>
<td>1150 GeV</td>
<td>1210 GeV</td>
</tr>
<tr>
<td>BB doublet</td>
<td>1000 GeV</td>
<td>1070 GeV</td>
<td>880 GeV</td>
<td>1140 GeV</td>
</tr>
</tbody>
</table>

Figure 5: Expected exclusion limits on the vector-like quark T or B masses for each individual channel. Expected and observed limits are shown for the combination [5].

Figure 6: Two-dimensional limits in the branching ratio plane for vector-like T (left) and B (right) showing the PP combination limits [5].

Figure 7: Expected and observed 95\% CL limits on $\sigma \times BR$ depending on the vector-like T mass m_T for the individual SP channels and their combination for a coupling of $\kappa_T = 0.5$ [7] (left). Observed lower limits on m_T for SP combination as a function of the coupling c_W and c_Z (in the high-m_T limit) [5] (right).

For single-production 95\% CL limits are set on $\sigma \times BR$ with a nominal coupling $\kappa_T = 0.5$ introduced in the model in Ref. [7]. In Figure 7 the limits are shown for both SP channels and
their combination. The value of $\kappa_T = 0.5$ corresponds to $c_W = \sqrt{c_{LW}^2 + c_{RW}^2} = 0.45$, a coupling in another model from Ref. [8]. The coupling c_W can then be reinterpreted in terms of a mixing angle $|\sin(\Theta_L)|$ [9] between T and the SM top quark. In Figure 8 (left) the exclusion of the c_W parameter space depending on the vector-like T mass m_T is shown for the singlet model. All values above the observed limit are excluded. For the mixing angle interpretation in Figure 8 (right) mixing angles within the contour are excluded. Furthermore, more generalized limits are set in coupling-mass space by assuming $BR(T \to Zt) \approx BR(T \to Ht)$ in the high-mass limit m_T. Subsequently, T masses as a function of the coupling to W, Z and H can be excluded. The corresponding exclusion limit plot can be seen in Figure 7 (right).

![Figure 8: Expected and observed 95% CL limits for the SP combination on the coupling c_W of T to SM particles in the singlet model (left) and on the mixing angle $|\sin(\Theta_L)|$ [5].](image)

4. Conclusion

A search for vector-like T (in pair- and single-production) and B quarks (in pair-production) was presented with data collected at the ATLAS experiment at the LHC. No excess above the SM expectation was found and limits on $\sigma \times BR$ as well as different couplings and mixing angles could be set. The large number of high-p_T objects motivate the use of boosted techniques like large-R jets. Single and pair-production channels were combined, increasing the overall sensitivity.

References