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A search for pair- and single-production of vector-like quarks T and B with a leptonically de-
caying Z boson is presented. The data were collected in pp collisions at

√
s = 13TeV with the

ATLAS detector at the LHC, corresponding to an integrated luminosity of 36.1fb−1. Final states
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1. Introduction

When searching for physics beyond the Standard Model (SM), Composite Higgs [1, 2] and
Little Higgs [3, 4] models play an important role. These models predict vector-like quarks, whose
right- and left-handed parts have the same transformation properties with respect to the weak
isospin group SU(2). This analysis [5] at the ATLAS experiment [6] at the LHC focuses on the
search for pair- and single-production of vector-like T and B quarks with charges qT = 2

3 e and
qB = −1

3 e. For the vector-like quark decays the assumption is made that only decays to a W , Z
or H boson and a third generation quark are possible. The final state is required to contain a Z
boson reconstructed from a lepton pair `+`− (` = e, µ). Figure 1 shows Feynman diagrams for
both processes under study, one mediated by the weak and one by the strong force.

Figure 1: Feynman diagrams for single-production (left) and pair-production (right) of vector-like
quarks with at least one Z boson in the final state.

2. Analysis strategy

The final states presented in Figure 1 contain different multiplicities of leptons, large-R jets
with radius R = 1.0, b-tagged small-R jets with R = 0.4 and high-pT objects alongside other dis-
criminating features.
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Figure 2: Normalized distributions of the lepton multiplicity, the number of b-tagged jets, the
large-R jet multiplicity and the forward jet multiplicity (from left to right) [5].

Figure 2 shows the distributions used for splitting the analysis into three orthogonal channels
for pair-production, while there are two different channels for single-production. Channels with
two leptons have a higher signal efficiency, while the background rejection is better for channels
with at least three leptons. A requirement of at least one b-tagged small-R jet rejects a lot of
background and can be extended to at least two for channels with a large number of events. Fur-
thermore, the number of large-R jets discriminates well between signal and background and is used
in the pair-production (PP) dilepton (2`) channels. For the single-production channels, the number
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of forward jets is required to be at least one, removing a substantial amount of background. To
summarize, five different channels are defined: These are PP 2` with ≤ 1 large-R jet or ≥ 2 large-R
jets, PP ≥ 3`, and for single-production (SP) 2` and ≥ 3`. The main backgrounds are Z+jets (PP
2` 0-1J, PP 2` 2J, SP 2`), tt̄ (PP 2` 0-1J, PP 2` 2J), tt̄ +X (PP 2` 2J, PP ≥ 3`, SP 2`, SP ≥ 3`) and
diboson events (PP ≥ 3`, SP 2`, SP ≥ 3`).

Five channels are optimized individually and a final discriminant is chosen. Either the recon-
structed vector-like quark mass mZb or mZt or a scalar sum of object momenta is chosen (HT for
jets and ST for leptons+jets). In Figure 3 and Figure 4 the final discriminants for each channel are
illustrated. Data and Monte Carlo expectation agree well within the uncertainties.

Each discriminant is used in a statistical analysis in order to test for a discovery or set limits
on the vector-like quark mass or the production cross-section times branching ratio σ × BR. For
the statistical analysis a binned profile likelihood fit is used based on the CLs method.
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Figure 3: Final discriminants for the PP 2` channels showing HT (left and center) and mZb
(right) [5].
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Figure 4: Final discriminants for the PP ≥ 3` channel (left) and for the single-production dilepton
(center) and trilepton (right) channels [5].

3. Results

After performing the profile likelihood fit with all systematic uncertainties taken as nuisance
parameters, no significant excess above the SM expectation is observed. Therefore, 95% confi-
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dence level (CL) limits are derived on σ ×BR and the couplings to the SM quarks. In Table 5 the
limits for PP are listed for the doublet models (with BR(T/B → t/b) = 50%).

Instead of focusing on a specific signal model the whole branching ratio plane can be scanned
under the assumption that all BRs add up to one. Figure 6 shows this scan and clearly illustrates
the largest sensitivity in the Z corner.

Model 2` 0-1J 2`≥ 2J ≥ 3` Combination
exp. exp. exp. obs. (exp.)

T T̄ doublet 820 GeV 1100 GeV 1150 GeV 1210 (1210) GeV

BB̄ doublet 1000 GeV 1070 GeV 880 GeV 1140 (1120) GeV

Figure 5: Expected exclusion limits on the vector-like quark T or B masses for each individual
channel. Expected and observed limits are shown for the combination [5].
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Figure 6: Two-dimensional limits in the branching ratio plane for vector-like T (left) and B (right)
showing the PP combination limits [5].
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Figure 7: Expected and observed 95% CL limits on σ ×BR depending on the vector-like T mass mT

for the individual SP channels and their combination for a coupling of κT = 0.5 [7] (left). Observed
lower limits on mT for SP combination as a function of the coupling cW and cZ (in the high-mT

limit) [5] (right).

For single-production 95% CL limits are set on σ ×BR with a nominal coupling κT = 0.5
introduced in the model in Ref. [7]. In Figure 7 the limits are shown for both SP channels and
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their combination. The value of κT = 0.5 corresponds to cW =
√

c2
L,W + c2

R,W = 0.45, a coupling in
another model from Ref. [8]. The coupling cW can then be reinterpreted in terms of a mixing angle
|sin(ΘL)| [9] between T and the SM top quark. In Figure 8 (left) the exclusion of the cW parameter
space depending on the vector-like T mass mT is shown for the singlet model. All values above
the observed limit are excluded. For the mixing angle interpretation in Figure 8 (right) mixing
angles within the contour are excluded. Furthermore, more generalized limits are set in coupling-
mass space by assuming BR(T → Zt)≈ BR(T → Ht) in the high-mass limit mT . Subsequently, T
masses as a function of the coupling to W , Z and H can be excluded. The corresponding exclusion
limit plot can be seen in Figure 7 (right).
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Figure 8: Expected and observed 95% CL limits for the SP combination on the coupling cW of T
to SM particles in the singlet model (left) and on the mixing angle |sin(ΘL)| [5].

4. Conclusion

A search for vector-like T (in pair- and single-production) and B quarks (in pair-production)
was presented with data collected at the ATLAS experiment at the LHC. No excess above the SM
expectation was found and limits on σ ×BR as well as different couplings and mixing angles could
be set. The large number of high-pT objects motivate the use of boosted techniques like large-R
jets. Single and pair-production channels were combined, increasing the overall sensitivity.
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