

Search for pair- and single-production of vector-like quarks in final states with at least one *Z* boson decaying into a pair of electrons or muons in *pp* collision data collected with the ATLAS detector at $\sqrt{s} = 13$ TeV

Elena Freundlich*[†], On behalf of the ATLAS Collaboration

Technische Universität Dortmund E-mail: elena.freundlich@cern.ch

> A search for pair- and single-production of vector-like quarks *T* and *B* with a leptonically decaying *Z* boson is presented. The data were collected in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 36.1 fb⁻¹. Final states are required to contain a *Z* boson reconstructed from a same-flavor pair of leptons with opposite electric charge and a third generation quark. The analysis targets both pair- and single-production of vector-like quarks and no excess above the Standard Model expectation is found. Lower mass limits on vector-like *T* and *B* quarks at 95% confidence level are derived and limits on the coupling to Standard Model quarks are set for single-production.

Sixth Annual Conference on Large Hadron Collider Physics (LHCP 2018) 4-9 June 2018 Bologna, Italy

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

[†]This work is supported by the Konrad-Adenauer-Stiftung.

Elena Freundlich

1. Introduction

When searching for physics beyond the Standard Model (SM), Composite Higgs [1, 2] and Little Higgs [3, 4] models play an important role. These models predict vector-like quarks, whose right- and left-handed parts have the same transformation properties with respect to the weak isospin group SU(2). This analysis [5] at the ATLAS experiment [6] at the LHC focuses on the search for pair- and single-production of vector-like T and B quarks with charges $q_T = \frac{2}{3}e$ and $q_B = -\frac{1}{3}e$. For the vector-like quark decays the assumption is made that only decays to a W, Z or H boson and a third generation quark are possible. The final state is required to contain a Z boson reconstructed from a lepton pair $\ell^+\ell^-$ ($\ell = e, \mu$). Figure 1 shows Feynman diagrams for both processes under study, one mediated by the weak and one by the strong force.

Figure 1: Feynman diagrams for single-production (left) and pair-production (right) of vector-like quarks with at least one Z boson in the final state.

2. Analysis strategy

The final states presented in Figure 1 contain different multiplicities of leptons, large-*R* jets with radius R = 1.0, *b*-tagged small-*R* jets with R = 0.4 and high- p_T objects alongside other discriminating features.

Figure 2: Normalized distributions of the lepton multiplicity, the number of b-tagged jets, the large-R jet multiplicity and the forward jet multiplicity (from left to right) [5].

Figure 2 shows the distributions used for splitting the analysis into three orthogonal channels for pair-production, while there are two different channels for single-production. Channels with two leptons have a higher signal efficiency, while the background rejection is better for channels with at least three leptons. A requirement of at least one *b*-tagged small-*R* jet rejects a lot of background and can be extended to at least two for channels with a large number of events. Furthermore, the number of large-*R* jets discriminates well between signal and background and is used in the pair-production (PP) dilepton (2ℓ) channels. For the single-production channels, the number

of forward jets is required to be at least one, removing a substantial amount of background. To summarize, five different channels are defined: These are PP 2ℓ with ≤ 1 large-*R* jet or ≥ 2 large-R jets, PP $\geq 3\ell$, and for single-production (SP) 2ℓ and $\geq 3\ell$. The main backgrounds are *Z*+jets (PP 2ℓ 0-1J, PP 2ℓ 2J, SP 2ℓ), $t\bar{t}$ (PP 2ℓ 0-1J, PP 2ℓ 2J), $t\bar{t} + X$ (PP 2ℓ 2J, PP $\geq 3\ell$, SP 2ℓ , SP $\geq 3\ell$) and diboson events (PP $\geq 3\ell$, SP 2ℓ , SP $\geq 3\ell$).

Five channels are optimized individually and a final discriminant is chosen. Either the reconstructed vector-like quark mass m_{Zb} or m_{Zt} or a scalar sum of object momenta is chosen (H_T for jets and S_T for leptons+jets). In Figure 3 and Figure 4 the final discriminants for each channel are illustrated. Data and Monte Carlo expectation agree well within the uncertainties.

Each discriminant is used in a statistical analysis in order to test for a discovery or set limits on the vector-like quark mass or the production cross-section times branching ratio $\sigma \times BR$. For the statistical analysis a binned profile likelihood fit is used based on the CL_s method.

Figure 3: Final discriminants for the PP 2ℓ channels showing H_T (left and center) and m_{Zb} (right) [5].

Figure 4: Final discriminants for the PP $\ge 3\ell$ channel (left) and for the single-production dilepton (center) and trilepton (right) channels [5].

3. Results

After performing the profile likelihood fit with all systematic uncertainties taken as nuisance parameters, no significant excess above the SM expectation is observed. Therefore, 95% confi-

dence level (*CL*) limits are derived on $\sigma \times BR$ and the couplings to the SM quarks. In Table 5 the limits for PP are listed for the doublet models (with $BR(T/B \rightarrow t/b) = 50\%$).

Instead of focusing on a specific signal model the whole branching ratio plane can be scanned under the assumption that all BRs add up to one. Figure 6 shows this scan and clearly illustrates the largest sensitivity in the Z corner.

Model	2ℓ 0-1J exp.	$2\ell \ge 2J$ exp.	$\geq 3\ell$ exp.	Combination obs. (exp.)
$T\bar{T}$ doublet	820 GeV	1100 GeV	1150 GeV	1210 (1210) GeV
$B\bar{B}$ doublet	1000 GeV	1070 GeV	880 GeV	1140 (1120) GeV

Figure 5: Expected exclusion limits on the vector-like quark T or B masses for each individual channel. Expected and observed limits are shown for the combination [5].

Figure 6: Two-dimensional limits in the branching ratio plane for vector-like T (left) and B (right) showing the PP combination limits [5].

Figure 7: Expected and observed 95% *CL* limits on $\sigma \times BR$ depending on the vector-like *T* mass m_T for the individual SP channels and their combination for a coupling of $\kappa_T = 0.5$ [7] (left). Observed lower limits on m_T for SP combination as a function of the coupling c_W and c_Z (in the high- m_T limit) [5] (right).

For single-production 95% *CL* limits are set on $\sigma \times BR$ with a nominal coupling $\kappa_T = 0.5$ introduced in the model in Ref. [7]. In Figure 7 the limits are shown for both SP channels and

their combination. The value of $\kappa_{T} = 0.5$ corresponds to $c_{W} = \sqrt{c_{L,W}^{2} + c_{R,W}^{2}} = 0.45$, a coupling in another model from Ref. [8]. The coupling c_{W} can then be reinterpreted in terms of a mixing angle $|\sin(\Theta_{L})|$ [9] between T and the SM top quark. In Figure 8 (left) the exclusion of the c_{W} parameter space depending on the vector-like T mass m_{T} is shown for the singlet model. All values above the observed limit are excluded. For the mixing angle interpretation in Figure 8 (right) mixing angles within the contour are excluded. Furthermore, more generalized limits are set in coupling-mass space by assuming $BR(T \to Zt) \approx BR(T \to Ht)$ in the high-mass limit m_{T} . Subsequently, T masses as a function of the coupling to W, Z and H can be excluded. The corresponding exclusion limit plot can be seen in Figure 7 (right).

Figure 8: Expected and observed 95% *CL* limits for the SP combination on the coupling c_W of *T* to SM particles in the singlet model (left) and on the mixing angle $|\sin(\Theta_L)|$ [5].

4. Conclusion

A search for vector-like *T* (in pair- and single-production) and *B* quarks (in pair-production) was presented with data collected at the ATLAS experiment at the LHC. No excess above the SM expectation was found and limits on $\sigma \times BR$ as well as different couplings and mixing angles could be set. The large number of high- p_T objects motivate the use of boosted techniques like large-*R* jets. Single and pair-production channels were combined, increasing the overall sensitivity.

References

- D. B. Kaplan, H. Georgi, and S. Dimopoulos, *Composite Higgs scalars*, Phys. Lett. B 136 (1984) 187.
 K. Agashe, R. Contino, and A. Pomarol, *The minimal composite Higgs model*, Nucl. Phys. B 719 (2005)
- K. Agashe, R. Contino, and A. Pomarol, *The minimal composite Higgs model*, Nucl. Phys. B 719 (2005) 165, arXiv: hep-ph/0412089.
- [3] N. Arkani-Hamed, A. Cohen, E. Katz, and A. Nelson, *The Littlest Higgs*, JHEP 07 (2002) 34, arXiv: hep-ph/0206021.
- [4] M. Schmaltz and D. Tucker-Smith, *LITTLE HIGGS THEORIES*, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229, arXiv: hep-ph/0502182.
 [5] ATLAS Collaboration,
- [5] ATLAS Contabolation, Search for pair- and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at $\sqrt{s} = 13$ TeV, (2018), arXiv: 1806.10555.
- [6] ATLAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, JINST 3 (2008) S08003.
 [7] M. Buchkremer, G. Cacciapaglia, A. Deandrea, and L. Panizzi,
- Model-independent framework for searches of top partners, Nucl. Phys. B 876 (2013) 376, arXiv: 1305.4172.
- [8] O. Matsedonskyi, G. Panico, and A. Wulzer, On the interpretation of Top Partners searches, JHEP 12 (2014) 097, arXiv: 1409.0100.
 [9] J. A. Arvis, S. Matsedon, D. Bachrik, S. Hainemann, and M. Díma, Vistaria.

[9] J. A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Pérez-Victoria, Handbook of vectorlike quarks: Mixing and single production, Phys. Rev. D 88 (2013) 094010, arXiv: 1306.0572.