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Using the relationship between collinear and kt -factorization, we discuss the hard scale uncer-
tainty. While the kt -factorization is free of this uncertainty, it should be taken into account in
the case of collinear factorization. Contrary to the factorization scale uncertainty, the hard scale
uncertainty is not reduced by higher order calculations. A more detailed work has been published
in [1].
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1. Collinear factorization and uncertainties

For hadron-hadron collisions, the collinear factorization formula is generally written1

dσ

dx1dx2d p2
t
(x1,x2, p2

t ,Q
2,µ2) = f (x1,µ

2) f (x2,µ
2)σ̂

(
x1,x2, p2

t ,
Q2

µ2

)
. (1.1)

The functions f and σ̂ are the parton densities and partonic cross section, respectively. The variable
pt corresponds to the transverse momentum of outgoing partons. We use the generic notation Q2

for the hard scale which is conventionally identified with p2
t . The factorization scale µ appears due

to the renormalization procedure. It comes inside logarithms of the type αs ln(Q2/µ2) and has to be
chosen close to Q2 for an accurate finite order calculation. The dependence on the renormalization
scale is not shown, and in this study we take αs constant. Finally, x1 and x2 are the longitudinal
momentum fractions carried by the incoming partons. The definition of parton densities is not
unique [2], and for our discussion, it is simpler to shift higher-order corrections from σ̂ to these
these functions, leading to the following factorization formula:

dσ

dx1dx2d p2
t
(x1,x2, p2

t ,Q
2,µ2) = f (x1,Q2; µ

2) f (x2,Q2; µ
2)σ̂

(
x1,x2, p2

t
)
. (1.2)

Taking into account the first higher-order corrections and following [3] we write

f (x,Q2; µ
2) = f (x,µ2)+

αs

2π

∫ 1

x

dξ

ξ
f (ξ ,µ2)

(
P
(

x
ξ

)
ln

Q2

µ2 +C(x)
)
, (1.3)

with C(x) a calculable function which is not enhanced by ln(Q2/µ2). In the following, we will
keep the choice and notation of Eqs. (1.2) and (1.3).

In an all-order calculation, the dependence on the unphysical scale µ will disappear in both
sides of Eq. (1.2). This is formalized by the DGLAP equation [4] (or [3] for a modern review)
which can be written

d f (x,Q2; µ2)

dµ2 = 0. (1.4)

However, at finite order, the physics does depend on the factorization scale. Consequently, there is
a factorization scale uncertainty. The logarithm ln(Q2/µ2) arises from an integral on the transverse
momentum, kt , of the incoming parton (an example is given in the case of deep inelastic scattering
(DIS) in figure 1). The hard scale appears in the upper bound of such an integral.

In this paper, we want to discuss the usual choice2 Q2 = p2
t done in hadron-hadron collisions,

giving the factorization formula

dσ

dx1dx2d p2
t
(x1,x2, p2

t ,µ
2) = f (x1, p2

t ; µ
2) f (x2, p2

t ; µ
2)σ̂

(
x1,x2, p2

t
)
. (1.5)

1We will use mainly schematic formulas. The sum over parton flavors is ignored and one can consider that there is
only one flavor (it simplifies also the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation). If not necessary,
integrals are not written.

2Or Q2 = m2
t , with m2

t = p2
t +m2 and m the mass of the outgoing parton(s).
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Figure 1: Real emission diagram in DIS.

For definiteness, we consider the case of transverse momentum distribution of heavy quarks in
proton-proton collisions at the LHC. This choice for the hard scale means that p2

t is assumed to
be the upper bound for the k2

t integration. Since, for on-shell partons the kinematical constraint is
k2

t < ŝ/4 (with ŝ = x1x2s), this is a good approximation in the region p2
t ' ŝ/4, but it is not correct

if Λ2
QCD� p2

t � ŝ/4. In fact, it is exactly in this region that the kt-factorization is expected to give
important corrections.

In the following, we will argue that the kt-factorization provides a fundamental explanation on
why choosing the hard scale to be p2

t is correct. But we will also see that this choice is not unique
and gives rise to a theoretical uncertainty (in the collinear factorization case) which is not taken into
account in current calculations. This uncertainty is not reduced by higher-order corrections. The
other uncertainties come from the choice of the factorization scale, the mass and parton densities.

2. kt-factorization

For hadron-hadron collisions, the kt-factorization [5, 6, 7, 8] can be written

dσ

dx1dx1d2 pt
(s,x1,x2, p2

t ,µ
2) =

∫ k2
max

d2k1td2k2tF(x1,k2
1t ; µ

2)F(x2,k2
2t ; µ

2)σ̂(x1x2s,k2
1t ,k

2
2t , p2

t ),

(2.1)
with σ̂ the off-shell cross section and F the unintegrated parton distribution (uPDF). The variables
k1t , k2t , x1 and x2 refer to the two spacelike partons entering in the 2→ 2 perturbative QCD process.
They correspond to the transverse momentum and the hadron longitudinal momentum fraction. The
variable pt is for the transverse momentum of the outgoing parton. For the upper bound k2

max, it
is sufficient to know that k2

max > x1x2s/4 = p2
t,max. Finally, the unintegrated PDF are related to the

usual one by

f (x,Q2; µ
2) =

∫ Q2

F(x,k2
t ; µ

2)d2kt , (2.2)

where we follow the notation used in refs. [9, 10] 3.

3. Relationship between collinear and kt-factorization: discussion on the hard scale
uncertainty

To understand why, in Eq. (1.5), the scale inside the parton density is approximatively p2
t

and why the collinear factorization still works at p2
t � s, it is interesting to see how the collinear

3However our function F(x,k2
t ; µ2) is related to their function by a factor x.

2



P
o
S
(
L
H
C
P
2
0
1
8
)
0
5
5

Hard scale uncertainty Benjamin Guiot

factorization can be found as a limit of the kt-factorization. Eq. (2.1) can be written

dσ

dx1dx2d p2
t
=
∫ Q2

d2k1td2k2tF(x1,k2
1t ; µ

2)F(x2,k2
2t ; µ

2)σ̂(x1x2s,k2
1t ,k

2
2t , p2

t )+∫ k2
max

Q2
d2k1td2k2tF(x1,k2

1t ; µ
2)F(x2,k2

2t ; µ
2)σ̂(x1x2s,k2

1t ,k
2
2t , p2

t ) = Ic f + Ict . (3.1)

The off-shell cross section is built in order to give the usual on-shell cross section in the limit
k2

it � p2
t . Then, if Q2 is not much bigger than p2

t , the first term above can be approximately written

Ic f = σ̂on−shell(x1x2s, p2
t )
∫ Q2

d2k1td2k2tF(x1,k2
1t ; µ

2)F(x2,k2
2t ; µ

2). (3.2)

Finally, using the definition (2.2), we obtain

Ic f = f (x1,Q2; µ
2) f (x2,Q2; µ

2)σ̂on−shell(x1x2s, p2
t ), (3.3)

corresponding to the collinear factorization, Eq. (1.2). It makes sense to cut the integral at Q2 if
the second term in Eq. (3.1) is just a correction. We now define the hard scale Q2 by

Ict(Q2)� Ic f (Q2), (3.4)

and we will see that Q2 = p2
t respects this condition, explaining in turn why Eq. (1.5) still works at

small pt .

4. Choosing the hard scale

We will now explain qualitatively why Q2 = p2
t is an acceptable choice, making the collinear

factorization formula Eq. (1.5) accurate. To understand this, we will consider separately the cases
of high pt and low pt (∼ 1 GeV).

The reason why the integral Ict can be small even if the phase space for integration is large
is due to the fact that in the region 1� p2

t < k2
i,t < k2

t,max the off-shell cross section is slowly
decreasing with k2

t (figure 2, left), while the unintegrated gluon density is strongly suppressed.
At small pt , the suppression due to the unintegrated gluon density is not enough to explain

why equation (3.4) is true if one chooses Q2 = p2
t . But, in this region, the off-shell cross section

decreases quickly with k2
t (figure 2, right), making the integration up to ∼ p2

t sufficient.
Then, we have shown that the dynamical properties of unintegrated PDF and off-shell cross

sections can be used to justify the choice Q2 = p2
t done in collinear factorization. The same demon-

stration could be done for Q2 = 2p2
t , showing that there is an hard scale uncertainty. However, all

values are not allowed and the reader can convince himlself that Q2 = p2
t /100 does not respect the

condition (3.4).

5. Conclusion

The kt-factorization can be decomposed into Ikt() = Ic f (Q2) + Ict(Q2). Eq. (3.4) ensures
the accuracy of the collinear factorization contribution, and is regarded as the definition of an
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Figure 2: Off-shell cross section for the process gg→QQ (taken from ref. [6]) as a function of the transverse
momentum k2

t = k2
1t = k2

2t of the incoming spacelike partons. Left: For central rapidity, y = 0, and p2
t = 50.

Right: y = 0, and p2
t = 1. Other variables have been integrated out.

appropriate hard scale. There is an uncertainty on the choice of the hard scale, and, in the case of
heavy quark production, the kt-factorization can be used to show that Q2 = p2

t is a possibility. This
hard scale uncertainty is not reduced by higher order calculations (it is a physical scale playing the
role of effective cutoff for the k2

t integration) and is absent within the kt-factorization formalism
(Ikt is independent of Q2). It is not taken into account in current calculations.
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