PROCEEDINGS ^{of} SCIENCE

CKM angle γ measurement at LHCb

Susan Haines* on behalf of the LHCb collaboration

University of Cambridge E-mail: haines@hep.phy.cam.ac.uk

Data collected at the LHCb experiment have been used to determine the CKM angle γ with $B^- \to DK^-$, $D \to K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays, leading to the most precise measurement of γ from a single analysis. Decay-time-dependent *CP* asymmetries in $B^0 \to D^{\mp} \pi^{\pm}$ decays have been measured for the first time at a hadron collider and used to place constraints on $|\sin(2\beta + \gamma)|$ and γ that are consistent with world average values. Combining these new results with other LHCb measurements leads to the most precise determination of γ from a single experiment. Decay modes with future sensitivity to γ , such as $B_s^0 \to \overline{D}^0 K^+ K^-$ and $B_s^0 \to \overline{D}^{*0} \phi$, have been observed for the first time, and the most precise determinations of the branching fractions of $B^0 \to \overline{D}^0 K^+ K^-$ and $B_s^0 \to \overline{D}^0 \phi$ decays have been obtained.

Sixth Annual Conference on Large Hadron Collider Physics (LHCP2018) 4-9 June 2018 Bologna, Italy

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

The angle $\gamma = arg(-(V_{ud}V_{ub}^*)/(V_{cd}V_{cb}^*))$ of the CKM unitarity triangle can be measured directly with tree-level *b*-hadron decays, using methods that exploit the weak-phase difference of γ between $b \rightarrow u$ and $b \rightarrow c$ quark transitions. The current world average value of γ , determined from direct measurements, is $\gamma = (73.5^{+4.2}_{-5.1})^{\circ}$ [1]. Theoretically, within the Standard Model, the value of γ determined in this way is very clean [2] but new physics phenomena, beyond the Standard Model, could affect its value at a level just below current experimental accuracy [3].

The LHCb detector [4] at the Large Hadron Collider is specifically designed for the study of particles containing *b* or *c* quarks. Of particular relevance for γ measurements is its high-precision tracking system, which provides a measurement of the momentum of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/*c*, and a decay time resolution of approximately 50 fs [5]. The impact parameter, the minimum distance between a track and a primary proton-proton interaction vertex, is measured with a resolution of $(15+29/p_T) \mu m$, where p_T is the component of the momentum transverse to the beam, in GeV/*c*. Different types of charged hadrons, such as kaons and pions, are distinguished using information from two ring-imaging Cherenkov detectors.

1. GGSZ analysis of $B^- \rightarrow DK^-$ with $D \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays

Time-integrated measurements of γ can be made using $B^- \rightarrow DK^-$ decays¹, where *D* represents a superposition of D^0 and \overline{D}^0 mesons decaying to the same final state. Alongside γ , the related parameters r_B (the magnitude of the ratio of amplitudes of the interfering decays) and δ_B (the strong-phase difference between them) are also measured.

The GGSZ method [6] allows γ to be measured from the difference between the distributions of B^- and B^+ candidate decays across the $D \to K_S^0 h^+ h^-$ phase space ($h = \pi$ or K). The resonant structure of the multi-body D decay must therefore be taken into account. In particular, knowledge of the strong-phase difference between D^0 and \overline{D}^0 decays across the phase space is required. One possible "model-independent" approach uses direct measurements of the strong-phase difference in binned regions of phase space, obtained using quantum-correlated charm threshold data [7].

Using proton-proton collision data corresponding to an integrated luminosity of 2.0 fb⁻¹ recorded by LHCb at a centre-of-mass energy of 13 TeV, $B^- \rightarrow DK^-$ with $D \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays have been used to measure the *CP* observables $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$ and $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$ with the model-independent method [8],

 $\begin{aligned} x_{+} &= (-7.7 \pm 1.9 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \pm 0.4 \text{ (extl.)}) \times 10^{-2}, \\ y_{+} &= (-1.0 \pm 1.9 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.9 \text{ (extl.)}) \times 10^{-2}, \\ x_{-} &= (-9.0 \pm 1.7 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \pm 0.4 \text{ (extl.)}) \times 10^{-2}, \\ y_{-} &= (-2.1 \pm 2.2 \text{ (stat.)} \pm 0.5 \text{ (syst.)} \pm 1.1 \text{ (extl.)}) \times 10^{-2}, \end{aligned}$

where the third uncertainties arise from external strong-phase difference input measurements. These results constitute the first observation of *CP* violation in $B^- \rightarrow DK^-$ with $D \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays.

¹The inclusion of charge conjugated processes is implied throughout.

Combining them with previous measurements made using LHCb data corresponding to an integrated luminosity of 3.0 fb⁻¹ recorded at centre-of-mass energies of 7 and 8 TeV [9] results in the constraints $\gamma = (80^{+10}_{-9})^{\circ}$, $r_B = 0.080 \pm 0.011$ and $\delta_B = (110 \pm 10)^{\circ}$. Two-dimensional projections of the corresponding confidence regions are shown in Fig. 1, alongside the constraints obtained using the two separate data sets, demonstrating good agreement between results.

Figure 1: Two-dimensional projections of the 68.3% and 95.5% confidence regions onto the (γ, r_B) and (γ, δ_B) planes [8]. The constraints from measurements using an integrated luminosity of 3.0 fb⁻¹ recorded at centre-of-mass energies of 7 and 8 TeV ("Run 1") and 2.0 fb⁻¹ at a centre-of-mass energy of 13 TeV ("2015 & 2016 data") are shown, along with their combination.

2. Time-dependent analysis of $B^0 \rightarrow D^{\mp} \pi^{\pm}$ decays

Measurements of *CP* violation in $B^0 \to D^{\mp} \pi^{\pm}$ decays provide information on the angles $\beta = arg(-(V_{cd}V_{cb}^*)/(V_{td}V_{tb}^*))$ and γ of the unitarity triangle. A total phase difference of $2\beta + \gamma$ arises between the amplitude of a direct $B^0 \to D^{\mp} \pi^{\pm}$ decay and a decay after oscillation to \overline{B}^0 . It is possible to measure decay-time-dependent *CP* asymmetries in $B^0 \to D^{\mp} \pi^{\pm}$ decays using the decay rates of B^0 and \overline{B}^0 mesons of known initial flavour, as a function of their decay time *t*. For an initial B^0 meson, the decay rate to final state $f = D^-\pi^+$ ($\overline{f} = D^+\pi^-$) is $\Gamma_{B^0 \to f(\overline{f})}(t) \propto e^{-\Gamma t} [1 + C_{f(\overline{f})} \cos(\Delta m t) - S_{f(\overline{f})} \sin(\Delta m t)]$, where Γ is the average B^0 decay width and Δm is the $B^0 - \overline{B}^0$ oscillation frequency. It is assumed that there is no *CP* violation in the decay, that |q/p| = 1, where q and p are the coefficients defining the heavy and light mass eigenstates of the B^0 meson system, and that $\Delta \Gamma = 0$, where $\Delta \Gamma$ is the difference in decay width between the two mass eigenstates. Under these assumptions, the *CP* asymmetries $C_{f(\overline{f})}$ and $S_{f(\overline{f})}$ are defined as

$$C_{f} = -C_{\overline{f}} = \frac{1 - r_{D\pi}^{2}}{1 + r_{D\pi}^{2}}, \quad S_{f} = -\frac{2r_{D\pi}\sin[\delta - (2\beta + \gamma)]}{1 + r_{D\pi}^{2}}, \quad S_{\overline{f}} = \frac{2r_{D\pi}\sin[\delta + (2\beta + \gamma)]}{1 + r_{D\pi}^{2}}$$

where $r_{D\pi} = |A(B^0 \to D^+\pi^-)/A(B^0 \to D^-\pi^+)|$ is the ratio of decay amplitudes and δ is the *CP*-conserving phase between them.

A measurement of the *CP* asymmetries S_f and $S_{\overline{f}}$ has been performed using proton-proton collision data collected at LHCb at centre-of-mass energies of 7 and 8 TeV and corresponding to an integrated luminosity of 3.0 fb⁻¹ [10]. In this analysis, terms $\mathscr{O}(r_{D\pi}^2)$ are neglected, due to the small value of $r_{D\pi}$; this fixes $C_f = -C_{\overline{f}} = 1$. Using external measurement constraints for Δm and Γ ,

this first measurement of the asymmetries at a hadron collider results in $S_f = 0.058 \pm 0.020$ (stat.) \pm 0.011 (syst.) and $S_{\overline{f}} = 0.038 \pm 0.020$ (stat.) ± 0.007 (syst.), which agree with, and are more precise than, previous measurements [11]. They are used to place constraints on $|\sin(2\beta + \gamma)|$ and γ , shown in Fig. 2, that are consistent with world average values.

Figure 2: 1-CL (confidence level) as a function of $|\sin(2\beta + \gamma)|$ (left) and γ (right), determined from *CP* asymmetries in $B^0 \rightarrow D^{\mp} \pi^{\pm}$ decays [10].

3. Combination of LHCb measurements

Using LHCb data, measurements of γ using time-integrated GLW [12], ADS [13], GGSZ [6] and Dalitz [14] approaches have been performed using b-hadron decays such as $B^- \rightarrow D^{(*)}K^{(*)-}$, $B^0 \to DK^{(*)0}, B^0 \to DK^+\pi^-$ and $B^- \to DK^-\pi^+\pi^+$ [15]. Time-dependent measurements [16] have also been performed with $B_s^0 \to D_s^{\pm} K^{\pm}$ and $B^0 \to D^{\pm} \pi^{\pm}$ decays. These results, including the new measurements described in Sections 1 and 2, are combined using a frequentist approach to determine γ with the highest precision from a single experiment, $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$ [17].

4. Future γ decay modes: $B^0_{(s)} \to \overline{D}^{(*)0} \phi$ and $B^0_{(s)} \to \overline{D}^0 K^+ K^-$

Proton-proton collision data collected at LHCb at centre-of-mass energies of 7 and 8 TeV and corresponding to an integrated luminosity of 3.0 fb⁻¹ have been used to measure and set limits on

the branching fractions of $B^0_{(s)} \to \overline{D}^0 K^+ K^-$, $B^0_{(s)} \to \overline{D}^0 \phi$ and $B^0_s \to \overline{D}^{*0} \phi$ decays [18]. The decays $B^0_s \to \overline{D}^0 K^+ K^-$ and $B^0_s \to \overline{D}^{*0} \phi$ are observed for the first time with measured branching fractions $\mathscr{B}(B^0_s \to \overline{D}^0 K^+ K^-) = (5.7 \pm 0.5 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.5 \text{ (norm.)}) \times 10^{-5}$ and $\mathscr{B}(B^0_s \to \overline{D}^{*0} \phi) = (3.7 \pm 0.5 \text{ (stat.)} \pm 0.3 \text{ (syst.)} \pm 0.2 \text{ (norm.)}) \times 10^{-5}$; the third uncertainties arise from the branching fractions of decay modes used for normalisation. The most precise determinations of $\mathscr{B}(B^0 \to \overline{D}^0 K^+ K^-) = (6.1 \pm 0.4 \text{ (stat.)} \pm 0.3 \text{ (syst.)} \pm 0.3 \text{ (norm.)}) \times 10^{-5}$ and $\mathscr{B}(B^0_s \to \overline{D}^0 \phi) = (3.0 \pm 0.3 \text{ (stat.)} \pm 0.2 \text{ (syst.)} \pm 0.2 \text{ (norm.)}) \times 10^{-5}$ are obtained, and an upper limit on the branching fraction of $B^0 \to \overline{D}^0 \phi$ is set, $\mathscr{B}(B^0 \to \overline{D}^0 \phi) < 2.0 \ (2.2) \times 10^{-6}$ at 90% (95%) confidence level. Figure 3 shows the $B_{(s)}^0$ candidate invariant mass distributions fitted to determine these results.

In future, with larger data samples, $B_s^0 \rightarrow D^{(*)}\phi$ will be a promising decay mode to measure γ , and a time-dependent amplitude analysis of $B_s^0 \rightarrow DK^+K^-$ decays will allow constraints to be placed on γ and the *CP*-violating phase ϕ_s of the B_s^0 meson system.

Figure 3: Fitted invariant mass distributions for $B^0_{(s)} \to \overline{D}^0 K^+ K^-$ candidates [18]. The left distribution shows all selected $B^0_{(s)} \to \overline{D}^0 K^+ K^-$ candidates. The right distribution shows the subset of candidates that have been statistically separated as $B^0_{(s)} \to \overline{D}^0 \phi$ using a fit to the $K^+ K^-$ invariant mass distribution.

5. Conclusions and prospects

Using LHCb data, the most precise measurement of γ from a single analysis has been determined with $B^- \to DK^-$ with $D \to K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays. The first measurement of decaytime-dependent *CP* asymmetries in $B^0 \to D^{\mp} \pi^{\pm}$ decays at a hadron collider has been used to place constraints on $|\sin(2\beta + \gamma)|$ and γ that are consistent with world average values. A combination of LHCb γ measurements, including these new results, leads to the most precise determination of γ from a single experiment. Decay modes with future sensitivity to γ , such as $B_s^0 \to \overline{D}^0 K^+ K^$ and $B_s^0 \to \overline{D}^{*0} \phi$, have been observed for the first time, and the most precise determinations of the branching fractions of $B^0 \to \overline{D}^0 K^+ K^-$ and $B_s^0 \to \overline{D}^0 \phi$ decays have been obtained. Studies of other new decay modes and analysis updates to include additional LHCb data will provide further measurements and constraints on γ in the near future.

Acknowledgement

The speaker expresses her gratitude for the generous support of the Leverhulme Trust in funding her participation in the conference.

References

- Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-hadron, c-hadron, and tau-lepton properties as of summer 2016, EPJ C77 (2017) 895 [arXiv:1612.07233]; updated Winter 2018 results available at https://hflav.web.cern.ch/
- [2] J. Brod and J. Zupan, *The ultimate theoretical error on* γ *from* $B \rightarrow DK$ *decays*, JHEP 01 (2014) 51 [arXiv:1308.5663]
- [3] J. Brod et al., *New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ*, Phys. Rev. D 92 (2015) 033002 [arXiv:1412.1446]
- [4] LHCb collaboration, A. A. Alves Jr et al., The LHCb Detector at the LHC, JINST 3 (2008) S08005

- [5] LHCb collaboration, R. Aaij et al., *LHCb detector performance*, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352]
- [6] A. Giri et al., Determining γ using B[±] → DK[±] with multibody D decays, Phys. Rev. D 68 (2003) 054018 [arXiv:hep-ph/0303187]; Belle collaboration, A. Poluektov et al., Measurement of φ₃ with Dalitz plot analysis of B[±] → D^(*)K[±] decay, Phys. Rev. D 70 (2004) 072003 [arXiv:hep-ex/0406067]
- [7] CLEO Collaboration, J. Libby et al., *Model-independent determination of the strong-phase difference* between D^0 and $\overline{D}^0 \to K^0_{S,L}h^+h^-$ ($h = \pi$, K) and its impact on the measurement of the CKM angle γ/ϕ_3 , Phys. Rev. D 82 (2010) 112006 [arXiv:hep-ex/1010.2817]
- [8] LHCb collaboration, R. Aaij et al., *Measurement of the CKM angle* γ using $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}K^{+}K^{-}$ decays, LHCb-PAPER-2018-017, submitted to JHEP [arXiv:1806.01202]
- [9] LHCb collaboration, R. Aaij et al., *Measurement of the CKM angle* γ using $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}K^{+}K^{-}$ decays, JHEP 10 (2014) 097 [arXiv:1408.2748]
- [10] LHCb collaboration, R. Aaij et al., *Measurement of CP violation in* $B^0 \rightarrow D^{\mp} \pi^{\pm}$ *decays*, JHEP 06 (2018) 084 [arXiv:1805.03448]
- [11] BaBar collaboration, B. Aubert et al., *Measurement of time-dependent CP asymmetries in* B⁰ → D^{(*)±}π[∓] and B⁰ → D[±]ρ[∓] decays, Phys. Rev. D 73 (2006) 111101 [arXiv:hep-ex/0602049]; Belle collaboration, F. J. Ronga et al., *Measurements of CP-violation in* B⁰ → D^{*-}π⁺ and B⁰ → D⁻π⁺ decays, Phys. Rev. D 73 (2006) 092003 [arXiv:hep-ex/0604013]
- [12] M. Gronau and D. London, *How to determine all the angles of the unitarity triangle from* $B_d^0 \rightarrow DK_S$ and $B_s^0 \rightarrow D\phi$, Phys. Lett. B 253 (1991) 483; M. Gronau and D. Wyler, *On determining a weak phase from charged B decay asymmetries*, Phys. Lett. B 265 (1991) 172
- [13] D. Atwood, I. Dunietz and A. Soni, Enhanced CP violation with $B \to KD^0(\overline{D}^0)$ modes and extraction of the Cabibbo-Kobayashi-Maskawa angle γ , Phys. Rev. Lett. 78 (1997) 3257; D. Atwood, I. Dunietz and A. Soni, Improved methods for observing CP violation in $B^{\pm} \to KD$ and measuring the CKM phase γ , Phys. Rev. D 63 (2001) 036005 [arXiv:hep-ph/0008090]
- [14] T. Gershon, On the measurement of the unitarity triangle angle γ from $B^0 \rightarrow DK^{*0}$ decays, Phys. Rev. D 79 (2009) 051301(R) [arXiv:0810.2706]; T. Gershon and M. Williams, Prospects for the measurement of the unitarity triangle angle γ from $B^0 \rightarrow DK^+\pi^-$ decays, Phys. Rev. D 80 (2009) 092002 [arXiv:0909.1495]
- [15] M. Gronau, *Improving bounds on* γ *in* $B^{\pm} \rightarrow DK^{\pm}$ *and* $B^{\pm,0} \rightarrow DX_s^{\pm,0}$, Phys. Lett. B 557 (2003) 198 [arXiv:hep-ph/0211282]
- [16] I. Dunietz and R. Sachs, Asymmetry between inclusive charmed and anticharmed modes in B^0 , \overline{B}^0 decay as a measure of CP violation, Phys. Rev. D 37 (1988) 3186; R. Aleksan, I. Dunietz, and B. Kayser, Determining the CP-violating phase γ , Z. Phys. C 54 (1992) 653; R. Fleischer, New strategies to obtain insights into CP violation through $B_s \rightarrow D_s^{\pm} K^{\mp}$, $D_s^{\pm \pm} K^{\mp}$, ... and $B_d \rightarrow D^{\pm} \pi^{\mp}$, $D^{*\pm} \pi^{\mp}$, ... decays, Nucl. Phys. B 671 (2003) 459 [arXiv:hep-ph/0304027]
- [17] LHCb collaboration, R. Aaij et al., Update of the LHCb combination of the CKM angle γ, LHCb-CONF-2018-002 (2018)
- [18] LHCb collaboration, R. Aaij et al., *Observation of the decay* $B_s^0 \to \overline{D}^0 K^+ K^-$, LHCb-PAPER-2018-014, submitted to Phys. Rev. D [arXiv:1807.01891]; LHCb collaboration, R. Aaij et al., *Observation of* $B_s^0 \to \overline{D}^{*0} \phi$ and search for $B^0 \to \overline{D}^0 \phi$ decays, LHCb-PAPER-2018-015, submitted to Phys. Rev. Lett. [arXiv:1807.01892]