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a control of the hadronic uncertainties for ruling out or confirming hints of BSM physics. In
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1. Introduction

In the Standard Model (SM) mixing of neutral Bq-mesons is governed by the famous box-
diagrams, with internal W -bosons and internal up-, charm- and top-quarks, see Fig. 1 for the case
of Bs-mesons - for a more detailed introduction into B-mixing, see e.g. [1]. The contribution of
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Figure 1: Standard Model diagrams for the transition between Bs and B̄s mesons.

internal on-shell particles (only the charm- and the up-quark can contribute) is denoted by Γ
q
12; the

contribution of internal off-shell particles (all depicted particles can contribute) is denoted by Mq
12.

In the B-system there are simple relations1 between Γ
q
12, Mq

12 and the physical observables mass
difference ∆Mq, the decay rate difference ∆Γq and the semi-leptonic asymmetries aq

sl:

∆Mq ≈ 2
∣∣Mq

12

∣∣ , ∆Γq ≈ 2
∣∣Γq

12

∣∣cosφ
q
12 , aq

sl ≈
∣∣∣∣ Γ

q
12

Mq
12

∣∣∣∣sinφ
q
12 . (1.1)

The calculation of Mq
12 gives

Mq
12 =

G2
F

12π2 λ
2
t M2

W S0(xt)B f 2
Bq

MBq η̂B , (1.2)

where λt denotes the CKM elements V ∗tqVtb and the Inami-Lim function S0 [5] contains the result
of the 1-loop box diagram in the SM. The bag parameter B and the decay constant fBq quantify
the hadronic contribution to B-mixing, the uncertainties of their numerical values make up the
by far biggest uncertainty in the SM prediction of the mass difference. Perturbative 2-loop QCD
corrections have been calculated by [6] and they are compressed in the factor η̂B. The calculation
of Γ

q
12 is more involved and is based on the Heavy Quark Expansion (HQE) (see [7] for a review

and the original references). According to the HQE the total decay rate of a heavy hadron can be
expanded in the inverse of the heavy quark mass as

1
τ
= Γ = Γ0 +

Λ2

m2
b

Γ2 +
Λ3

m3
b

Γ3 +
Λ4

m4
b

Γ4 + ... . (1.3)

The hadronic scale Λ is of order ΛQCD, its numerical value has to be determined by direct com-
putation. For hadron lifetimes it turns out that the dominant correction to Γ0 is the third term Γ3.
Each of the Γi’s can be split up in a perturbative part and non-perturbative matrix elements - it can
be formally written as

Γi =

[
Γ
(0)
i +

αS

4π
Γ
(1)
i +

α2
S

(4π)2 Γ
(2)
i + ... ,

]
〈Od=i+3〉 (1.4)

1This holds not for D-mixing, see e.g. [2, 3, 4].
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where Γ
(0)
i denotes the perturbative LO-contribution, Γ

(1)
i the NLO one and so on; 〈Od=i+3〉 is

the non-perturbative matrix element of ∆B = 0 operators of dimension i+3. The mixing quantity
Γ

q
12 obeys a very similar HQE, but now the operators change the b-quantum number by two units,

∆B = 2:

Γ12 =
Λ3

m3
b

Γ3 +
Λ4

m4
b

Γ4 + ... . (1.5)

2. Current Status

We introduce in this section a rating system for the robustness of lifetime and mixing predic-
tions. Any calculation of a perturbative term (Γ( j)

i ) or a non-perturbative matrix element (〈Od=k〉)
gets a ′′+′′; if the calculation is confirmed by an independent collaboration it gets a ′′++′′. In the
case of non-perturbative matrix elements one can even gain a ′′+++′′ for two independent lattice
evaluations and one sum rule evaluation. A missing non-perturbative matrix element of dimension
6 is punished by a ′′−−′′ contribution. Non-perturbative estimates different from lattice or sum
rules (like quark models) will be valued by a ′′0′′. Partial perturbative calculations will be rated
with a ′′+/2′′. The possible number of 15 “+” will be classified in 5 categories: **** (at least 12
“+”), *** (at least 8 “+”), ** (at least 4 “+”), * (at least 2 “+”) and no star for 1 or less “+”.
For the lifetimes of heavy hadrons we get the following overview:

Obs. Γ
(0)
3 Γ

(1)
3 Γ

(2)
3 〈Od=6〉 Γ

(0)
4 Γ

(1)
4 〈Od=7〉 ∑

τ(B+)/τ(Bd) ++ ++ 0 + ++ 0 0 ∗∗ (7+)

τ(Bs)/τ(Bd) ++ ++ 0 +
2 ++ 0 0 ∗∗ (6.5+)

τ(Λb)/τ(Bd) ++ +
2 0 +

2 + 0 0 ∗∗ (4+)

τ(b−baryon)/τ(Bd) ++ 0 0 0 + 0 0 ∗ (3+)

τ(Bc) + 0 0 + 0 0 0 ∗ (2+)

τ(D+)/τ(D0) ++ ++ 0 + ++ 0 0 ∗∗ (7+)

τ(D+
s )/τ(D0) ++ ++ 0 +

2 ++ 0 0 ∗∗ (6.5+)

τ(c−baryon)/τ(D0) ++ 0 0 0 + 0 0 ∗ (3+)

The LO-QCD part Γ
(0)
3 was first done with the full charm quark mass dependence in 1996 by

Uraltsev [8] and Neubert and Sachrajda [9]. For the Bc-meson one has to estimate also the leading
HQE term Γ0 - the full estimate of the lifetime was done by Beneke and Buchalla [10] - to some
extent this quantity does not perfectly fit in our list. The NLO-QCD corrections Γ

(1)
3 to B+, Bd

and Bs were done by [11] and the Rome group [12] - the Rome group also presented part of the
NLO-QCD corrections for the Λb. In the charm system the NLO-QCD corrections were done by
[13] for D-mesons. The dimension 6 matrix elements for mesons (except for small corrections
arising in Bs and Ds) were recently calculated via HQET sum rules [14] - here a complementary
lattice evaluation would be very important, either for looking for BSM effects in the very precisely
predicted ratio τ(Bs)/τ(Bd) - this could point towards new effects in hadronic tree-level decays
[15] - , or for testing the convergence of the HQE in the b- and in particular in the charm-system.
For baryons we do not have a complete first principle determination of the non-perturbative matrix
elements - there are sum rule determinations of the condensate contribution for the Λb [16] - we
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Source fBs

√
B̂ ∆MSM

s

HPQCD14 [21] (247±12) MeV (16.2±1.7)ps−1

HQET-SR [14] (261±8) MeV (18.1±1.1)ps−1

ETMC13 [22] (262±10) MeV (18.3±1.5)ps−1

HPQCD09 [23] = FLAG13 [24] (266±18) MeV (18.9±2.6)ps−1

FLAG17 [25] (274±8) MeV (20.01±1.25)ps−1

Fermilab16 [26] (274.6±4) MeV (20.1±0.7)ps−1

HPQCD06 [27] (281±20) MeV (21.0±3.0)ps−1

RBC/UKQCD14 [28] (290±20) MeV (22.4±3.4)ps−1

Fermilab11 [29] (291±18) MeV (22.6±2.8)ps−1

Table 1: List of predictions for the non-perturbative parameter fBs

√
B̂ and the corresponding SM prediction

for ∆Ms. The current FLAG average is dominated by the FERMILAB/MILC value from 2016.

have, however, some estimates [7, 18] of the size of the matrix elements using spectroscopy as an
input (based on [17]). LO dimension 7 contributions to B+, Bs, Bd and Λb were done in [19]. These
authors also considered dimension 8 contribution, but since there are operators arising where we
even cannot use vacuum insertion approximation, we did not include these corrections in our list.
There are unpublished calculations of the dimension 7 terms to B+, Bs and Bd by Uli Nierste and
myself, that agree with [19], therefore the “++” in the table. Perturbative dimension 7 contributions
to D mesons were determined in [13] and to charmed baryons in [18]. So far there exists no non-
perturbative determination of the matrix elements of dimension 7 operators. In Fig. 2, taken from
[14], we compare the most solid SM predictions for heavy lifetimes with experiment and find an
excellent agreement.

1.00 1.05 1.10 1.15 1.20
Lifetime ratio (B system)

(B0
s)/ (B0

d)
HFLAV: 0.994 ± 0.004
    HQE: 0.9994 ± 0.0025

(B +)/ (B0
d)

HFLAV: 1.076 ± 0.004
    HQE: 1.082+0.022

0.026

(B +)/ (B0
d)

HFLAV: 1.076 ± 0.004
    HQE: 1.082+0.022

0.026

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Lifetime ratio (D system)

(D +)/ (D0)
HFLAV: 2.536 ± 0.019
    HQE: 2.7+0.74

0.82

(D +)/ (D0)
HFLAV: 2.536 ± 0.019
    HQE: 2.7+0.74

0.82

Figure 2: Comparison of the most solid SM predictions for heavy lifetimes with experiment.

The SM prediction for the mass difference is completely dominated by the non-perturbative input
for the matrix element of the dimension 6 operator with a V-A Dirac structure. Depending on this
input we get the range of predictions for the mass difference in the Bs-system as indicated in Table
1, taken from [20].
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For the SM predictions of the decay rate differences in the Bd and Bs-system we get the following
list:

Obs. Γ
(0)
3 Γ

(1)
3 Γ

(2)
3 〈Od=6〉 Γ

(0)
4 Γ

(1)
4 〈Od=7〉 ∑

Γs
12 ++ ++ +

2 ++ ++ 0 0 8.5+(∗∗∗)
Γd

12 ++ ++ 0 +++ ++ 0 0 9+(∗∗∗)

The NLO-QCD corrections Γ
(1)
3 have been calculated in [30, 31, 32], recently also a part of the

NNLO-QCD has been determined [33]. At dimension 6 two additional operators to the one ap-
pearing in the mass difference are arising. We have currently a HQET sum rule determination for
Bd mesons [34, 14] and lattice determinations from 2016 [26] (N f = 2+1) and 2013 [22] (N f = 2).
The dimension 7 perturbative part has been determined already in 1996 by Buchalla and Beneke
[35] for Bs and in [36] for Bd . For numerical values of the mixing observables see e.g. the aggres-
sive scenario of [2]

∆Γs = (0.098±0.014)ps−1 , as
sl = (2.27±0.25) ·10−5 , (2.1)

∆Γd = (2.99±0.52) ·10−3ps−1 , ad
sl =−(4.90±0.54) ·10−4 . (2.2)

3. One constraint to kill them all

The importance of the precise value of SM predictions and a strict control of the corresponding
uncertainties was highlighted recently in [20]. Lepto-quarks and Z′ models are popular explana-
tions of the B anomalies2; these new models would also affect B-mixing - in the case of Z′ models
already at tree-level. In Fig. 3 (from [20]) we show the allowed parameter range for a Z′ model:
in order to explain e.g. RK(∗) the mass of the Z′ and the coupling to the b- and s-quark should lie
within the black parabola-like shape (the 1 sigma bound is a solid line, the 2 sigma one a dotted
line). Taking the FLAG inputs from 2013 for the mass difference one can exclude the blue region.
Taking the new FLAG average, that is dominated by the 2016 FNAL/MILC we are left with the red
exclusion region and almost all of the possible parameter space of the Z′ model is excluded.

Figure 3: Allowed parameter space of Z′ models that try to explain the B anomalies.

2Due to time and space restrictions I will not attempt to cite the numerous relevant papers in that field.
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4. Conclusion

We presented an overview of the current theoretical status of lifetime and mixing predictions.
∆Γq and aq

sl get the highest ranking (***). Γs
12 is slightly less precise known, because the HQET

sum rule calculation does not include yet ms-effects. To improve further the reliability of these
predictions one needs a non-perturbative determination of the dimension 7 matrix elements (first
steps have been done in [37]) and perturbative evaluations of the α2

s - and αs/mb-corrections. The
next solid class of theoretical rigidness is (**) for τ(B+)/τ(Bd) and τ(D+)/τ(D0). Here an inde-
pendent lattice determination of the dimension 6 matrix elements is urgently needed. τ(Bs)/τ(Bd)

and τ(D+
s )/τ(D0) is slightly less well known, because the ms corrections to the HQET sum rule are

not yet available. Finally Λb is considerably less well-known but still a (**) - here we need urgently
a first non-perturbative determination of the dimension 6 matrix element. Finally we have the (*)
class, which one should consider more an estimate than a precise SM prediction with well-defined
uncertainties. We pointed out the crucial significance of a precise non-perturbative input for ∆Mq

and related BSM studies - here an independent N f = 2+ 1 or N f = 2+ 1+ 1 confirmation of the
FNAL/MILC result of 2016 would be desirable.
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