PROCEEDINGS
OF SCIENCE

Theory of Mixing and CP violation

Alexander Lenz*

IPPP, Durham University, UK
E-mail: alexander.lenz@durham.ac.uk

We review the current status of B-mixing observables and point out the crucial importance of a control of the hadronic uncertainties for ruling out or confirming hints of BSM physics. In addition we introduce a rating system for theory predictions for lifetimes and mixing observables, that classifies the quality of the corresponding SM values ranging from no star to ${ }^{* * * * \text {. }}$

Sixth Annual Conference on Large Hadron Collider Physics (LHCP2018)
4-9 June 2018
Bologna, Italy

[^0]
1. Introduction

In the Standard Model (SM) mixing of neutral B_{q}-mesons is governed by the famous boxdiagrams, with internal W-bosons and internal up-, charm- and top-quarks, see Fig. 1 for the case of B_{s}-mesons - for a more detailed introduction into B-mixing, see e.g. [1]. The contribution of

Figure 1: Standard Model diagrams for the transition between B_{s} and \bar{B}_{s} mesons.
internal on-shell particles (only the charm- and the up-quark can contribute) is denoted by Γ_{12}^{q}; the contribution of internal off-shell particles (all depicted particles can contribute) is denoted by M_{12}^{q}. In the B-system there are simple relations ${ }^{1}$ between $\Gamma_{12}^{q}, M_{12}^{q}$ and the physical observables mass difference ΔM_{q}, the decay rate difference $\Delta \Gamma_{q}$ and the semi-leptonic asymmetries $a_{s l}^{q}$:

$$
\begin{equation*}
\Delta M_{q} \approx 2\left|M_{12}^{q}\right|, \quad \Delta \Gamma_{q} \approx 2\left|\Gamma_{12}^{q}\right| \cos \phi_{12}^{q}, \quad a_{s l}^{q} \approx\left|\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right| \sin \phi_{12}^{q} \tag{1.1}
\end{equation*}
$$

The calculation of M_{12}^{q} gives

$$
\begin{equation*}
M_{12}^{q}=\frac{G_{F}^{2}}{12 \pi^{2}} \lambda_{t}^{2} M_{W}^{2} S_{0}\left(x_{t}\right) B f_{B_{q}}^{2} M_{B_{q}} \hat{\eta}_{B} \tag{1.2}
\end{equation*}
$$

where λ_{t} denotes the CKM elements $V_{t q}^{*} V_{t b}$ and the Inami-Lim function S_{0} [5] contains the result of the 1 -loop box diagram in the SM. The bag parameter B and the decay constant $f_{B_{q}}$ quantify the hadronic contribution to B-mixing, the uncertainties of their numerical values make up the by far biggest uncertainty in the SM prediction of the mass difference. Perturbative 2-loop QCD corrections have been calculated by [6] and they are compressed in the factor $\hat{\eta}_{B}$. The calculation of Γ_{12}^{q} is more involved and is based on the Heavy Quark Expansion (HQE) (see [7] for a review and the original references). According to the HQE the total decay rate of a heavy hadron can be expanded in the inverse of the heavy quark mass as

$$
\begin{equation*}
\frac{1}{\tau}=\Gamma=\Gamma_{0}+\frac{\Lambda^{2}}{m_{b}^{2}} \Gamma_{2}+\frac{\Lambda^{3}}{m_{b}^{3}} \Gamma_{3}+\frac{\Lambda^{4}}{m_{b}^{4}} \Gamma_{4}+\ldots \tag{1.3}
\end{equation*}
$$

The hadronic scale Λ is of order $\Lambda^{Q C D}$, its numerical value has to be determined by direct computation. For hadron lifetimes it turns out that the dominant correction to Γ_{0} is the third term Γ_{3}. Each of the Γ_{i} 's can be split up in a perturbative part and non-perturbative matrix elements - it can be formally written as

$$
\begin{equation*}
\Gamma_{i}=\left[\Gamma_{i}^{(0)}+\frac{\alpha_{S}}{4 \pi} \Gamma_{i}^{(1)}+\frac{\alpha_{S}^{2}}{(4 \pi)^{2}} \Gamma_{i}^{(2)}+\ldots,\right]\left\langle O^{d=i+3}\right\rangle \tag{1.4}
\end{equation*}
$$

[^1]where $\Gamma_{i}^{(0)}$ denotes the perturbative LO-contribution, $\Gamma_{i}^{(1)}$ the NLO one and so on; $\left\langle O^{d=i+3}\right\rangle$ is the non-perturbative matrix element of $\Delta B=0$ operators of dimension $i+3$. The mixing quantity Γ_{12}^{q} obeys a very similar HQE, but now the operators change the b-quantum number by two units, $\Delta B=2$:
\[

$$
\begin{equation*}
\Gamma_{12}=\frac{\Lambda^{3}}{m_{b}^{3}} \Gamma_{3}+\frac{\Lambda^{4}}{m_{b}^{4}} \Gamma_{4}+\ldots \tag{1.5}
\end{equation*}
$$

\]

2. Current Status

We introduce in this section a rating system for the robustness of lifetime and mixing predictions. Any calculation of a perturbative term $\left(\Gamma_{i}^{(j)}\right)$ or a non-perturbative matrix element $\left(\left\langle O^{d=k}\right\rangle\right)$ gets a " $+^{\prime \prime}$; if the calculation is confirmed by an independent collaboration it gets a ${ }^{\prime \prime}++^{\prime \prime}$. In the case of non-perturbative matrix elements one can even gain a " $+++^{\prime \prime}$ for two independent lattice evaluations and one sum rule evaluation. A missing non-perturbative matrix element of dimension 6 is punished by a " $--^{\prime \prime}$ contribution. Non-perturbative estimates different from lattice or sum rules (like quark models) will be valued by a " 0 ". Partial perturbative calculations will be rated with a" $+/ 2^{\prime \prime}$. The possible number of 15 " + " will be classified in 5 categories: **** (at least 12 " + "), ${ }^{* * *}$ (at least 8 " + "), ** (at least 4 " + "), * (at least 2 " + ") and no star for 1 or less " + ".
For the lifetimes of heavy hadrons we get the following overview:

Obs.	$\Gamma_{3}^{(0)}$	$\Gamma_{3}^{(1)}$	$\Gamma_{3}^{(2)}$	$\left\langle O^{d=6}\right\rangle$	$\\| \Gamma_{4}^{(0)}$	$\Gamma_{4}^{(1)}$	$\left\langle O^{d=7}\right\rangle$	Σ
$\tau\left(B^{+}\right) / \tau\left(B_{d}\right)$	++	++	0	+	++	0	0	** (7+)
$\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$	++	++	0	$\frac{ \pm}{2}$	++	0	0	** (6.5+)
$\tau\left(\Lambda_{b}\right) / \tau\left(B_{d}\right)$	++	$\frac{ \pm}{2}$	0	$\frac{1}{2}$	+	0	0	** (4+)
$\tau($ b-baryon $) / \tau\left(B_{d}\right)$	++	0	0	0	+	0	0	* (3+)
$\tau\left(B_{c}\right)$	+	0	0	+	0	0	0	* (2+)
$\tau\left(D^{+}\right) / \tau\left(D^{0}\right)$	++	++	0	+	++	0	0	** (7+)
$\tau\left(D_{s}^{+}\right) / \tau\left(D^{0}\right)$	++	++	0	$\frac{ \pm}{2}$	++	0	0	** (6.5+)
$\tau(c-$ baryon $) / \tau\left(D^{0}\right)$	++	0	0		+	0	0	* (3+)

The LO-QCD part $\Gamma_{3}^{(0)}$ was first done with the full charm quark mass dependence in 1996 by Uraltsev [8] and Neubert and Sachrajda [9]. For the B_{c}-meson one has to estimate also the leading HQE term Γ_{0} - the full estimate of the lifetime was done by Beneke and Buchalla [10] - to some extent this quantity does not perfectly fit in our list. The NLO-QCD corrections $\Gamma_{3}^{(1)}$ to B^{+}, B_{d} and B_{s} were done by [11] and the Rome group [12] - the Rome group also presented part of the NLO-QCD corrections for the Λ_{b}. In the charm system the NLO-QCD corrections were done by [13] for D-mesons. The dimension 6 matrix elements for mesons (except for small corrections arising in B_{s} and D_{s}) were recently calculated via HQET sum rules [14] - here a complementary lattice evaluation would be very important, either for looking for BSM effects in the very precisely predicted ratio $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$ - this could point towards new effects in hadronic tree-level decays [15] - , or for testing the convergence of the HQE in the b - and in particular in the charm-system. For baryons we do not have a complete first principle determination of the non-perturbative matrix elements - there are sum rule determinations of the condensate contribution for the Λ_{b} [16] - we

Source	$f_{B_{s}} \sqrt{\hat{B}}$	$\Delta M_{s}^{\mathrm{SM}}$
HPQCD14 [21]	$(247 \pm 12) \mathrm{MeV}$	$(16.2 \pm 1.7) \mathrm{ps}^{-1}$
HQET-SR [14]	$(261 \pm 8) \mathrm{MeV}$	$(18.1 \pm 1.1) \mathrm{ps}^{-1}$
ETMC13 [22]	$(262 \pm 10) \mathrm{MeV}$	$(18.3 \pm 1.5) \mathrm{ps}^{-1}$
HPQCD09 [23] = FLAG13 [24]	$(266 \pm 18) \mathrm{MeV}$	$(18.9 \pm 2.6) \mathrm{ps}^{-1}$
FLAG17 [25]	$(274 \pm 8) \mathrm{MeV}$	$(20.01 \pm 1.25) \mathrm{ps}^{-1}$
Fermilab16 [26]	$(274.6 \pm 4) \mathrm{MeV}$	$(20.1 \pm 0.7) \mathrm{ps}^{-1}$
HPQCD06 [27]	$(281 \pm 20) \mathrm{MeV}$	$(21.0 \pm 3.0) \mathrm{ps}^{-1}$
RBC/UKQCD14 [28]	$(290 \pm 20) \mathrm{MeV}$	$(22.4 \pm 3.4) \mathrm{ps}^{-1}$
Fermilab11 [29]	$(291 \pm 18) \mathrm{MeV}$	$(22.6 \pm 2.8) \mathrm{ps}^{-1}$

Table 1: List of predictions for the non-perturbative parameter $f_{B_{s}} \sqrt{\hat{B}}$ and the corresponding SM prediction for ΔM_{s}. The current FLAG average is dominated by the FERMILAB/MILC value from 2016.
have, however, some estimates $[7,18]$ of the size of the matrix elements using spectroscopy as an input (based on [17]). LO dimension 7 contributions to B^{+}, B_{s}, B_{d} and Λ_{b} were done in [19]. These authors also considered dimension 8 contribution, but since there are operators arising where we even cannot use vacuum insertion approximation, we did not include these corrections in our list. There are unpublished calculations of the dimension 7 terms to B^{+}, B_{s} and B_{d} by Uli Nierste and myself, that agree with [19], therefore the " ++ " in the table. Perturbative dimension 7 contributions to D mesons were determined in [13] and to charmed baryons in [18]. So far there exists no nonperturbative determination of the matrix elements of dimension 7 operators. In Fig. 2, taken from [14], we compare the most solid SM predictions for heavy lifetimes with experiment and find an excellent agreement.

Figure 2: Comparison of the most solid SM predictions for heavy lifetimes with experiment.

The SM prediction for the mass difference is completely dominated by the non-perturbative input for the matrix element of the dimension 6 operator with a V-A Dirac structure. Depending on this input we get the range of predictions for the mass difference in the B_{s}-system as indicated in Table 1 , taken from [20].

For the SM predictions of the decay rate differences in the B_{d} and B_{s}-system we get the following list:

Obs.	$\Gamma_{3}^{(0)}$	$\Gamma_{3}^{(1)}$	$\Gamma_{3}^{(2)}$	$\left\langle O^{d=6}\right\rangle$	$\Gamma_{4}^{(0)} \mid \Gamma_{4}^{(1)}$	$\left\langle O^{d=7}\right\rangle$	Σ
Γ_{12}^{s}	+++++	$\frac{+}{2}$	++	++	0	0	$8.5+(* * *)$
Γ_{12}^{d}	++	++	0	+++	++	0	0

The NLO-QCD corrections $\Gamma_{3}^{(1)}$ have been calculated in [30, 31, 32], recently also a part of the NNLO-QCD has been determined [33]. At dimension 6 two additional operators to the one appearing in the mass difference are arising. We have currently a HQET sum rule determination for B_{d} mesons [34, 14] and lattice determinations from 2016 [26] ($N_{f}=2+1$) and 2013 [22] ($N_{f}=2$). The dimension 7 perturbative part has been determined already in 1996 by Buchalla and Beneke [35] for B_{s} and in [36] for B_{d}. For numerical values of the mixing observables see e.g. the aggressive scenario of [2]

$$
\begin{align*}
& \Delta \Gamma_{s}=(0.098 \pm 0.014) \mathrm{ps}^{-1}, \quad a_{s l}^{s}=(2.27 \pm 0.25) \cdot 10^{-5}, \tag{2.1}\\
& \Delta \Gamma_{d}=(2.99 \pm 0.52) \cdot 10^{-3} \mathrm{ps}^{-1}, \quad a_{s l}^{d}=-(4.90 \pm 0.54) \cdot 10^{-4} \text {. } \tag{2.2}
\end{align*}
$$

3. One constraint to kill them all

The importance of the precise value of SM predictions and a strict control of the corresponding uncertainties was highlighted recently in [20]. Lepto-quarks and Z^{\prime} models are popular explanations of the B anomalies ${ }^{2}$; these new models would also affect B-mixing - in the case of Z^{\prime} models already at tree-level. In Fig. 3 (from [20]) we show the allowed parameter range for a Z^{\prime} model: in order to explain e.g. $R_{K^{(*)}}$ the mass of the Z^{\prime} and the coupling to the b - and s-quark should lie within the black parabola-like shape (the 1 sigma bound is a solid line, the 2 sigma one a dotted line). Taking the FLAG inputs from 2013 for the mass difference one can exclude the blue region. Taking the new FLAG average, that is dominated by the 2016 FNAL/MILC we are left with the red exclusion region and almost all of the possible parameter space of the Z^{\prime} model is excluded.

Figure 3: Allowed parameter space of Z^{\prime} models that try to explain the B anomalies.

[^2]
4. Conclusion

We presented an overview of the current theoretical status of lifetime and mixing predictions. $\Delta \Gamma_{q}$ and $a_{s l}^{q}$ get the highest ranking $\left({ }^{* * *)} . \Gamma_{12}^{s}\right.$ is slightly less precise known, because the HQET sum rule calculation does not include yet m_{s}-effects. To improve further the reliability of these predictions one needs a non-perturbative determination of the dimension 7 matrix elements (first steps have been done in [37]) and perturbative evaluations of the α_{s}^{2} - and α_{s} / m_{b}-corrections. The next solid class of theoretical rigidness is (**) for $\tau\left(B^{+}\right) / \tau\left(B_{d}\right)$ and $\tau\left(D^{+}\right) / \tau\left(D^{0}\right)$. Here an independent lattice determination of the dimension 6 matrix elements is urgently needed. $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$ and $\tau\left(D_{s}^{+}\right) / \tau\left(D^{0}\right)$ is slightly less well known, because the m_{s} corrections to the HQET sum rule are not yet available. Finally Λ_{b} is considerably less well-known but still a $\left({ }^{* *}\right)$ - here we need urgently a first non-perturbative determination of the dimension 6 matrix element. Finally we have the (*) class, which one should consider more an estimate than a precise SM prediction with well-defined uncertainties. We pointed out the crucial significance of a precise non-perturbative input for ΔM_{q} and related BSM studies - here an independent $N_{f}=2+1$ or $N_{f}=2+1+1$ confirmation of the FNAL/MILC result of 2016 would be desirable.

Acknowledgement

I would like to thank the organisers and Luca Silvestrini for inviting me, Thomas Rauh for critical remarks on my classification scheme, Matthew Kirk, Luca Di Luzio and Thomas Rauh for the pleasant collaboration and STFC for support via the IPPP research grant.

References

[1] M. Artuso, G. Borissov and A. Lenz, Rev. Mod. Phys. 88 (2016) no.4, 045002 [arXiv:1511.09466 [hep-ph]]. A. Lenz and U. Nierste, arXiv:1102.4274 [hep-ph]. A. Lenz and U. Nierste, JHEP 0706 (2007) 072 [hep-ph/0612167]. K. Anikeev et al., hep-ph/0201071.
[2] T. Jubb, M. Kirk, A. Lenz and G. Tetlalmatzi-Xolocotzi, Nucl. Phys. B 915 (2017) 431 [arXiv:1603.07770 [hep-ph]].
[3] M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, JHEP 1003 (2010) 009 [arXiv:1002.4794 [hep-ph]].
[4] U. Nierste, arXiv:0904.1869 [hep-ph].
[5] T. Inami and C. S. Lim, Prog. Theor. Phys. 65 (1981) 297 E: [Prog. Theor. Phys. 65 (1981) 1772].
[6] A. J. Buras, M. Jamin and P. H. Weisz, Nucl. Phys. B 347 (1990) 491.
[7] A. Lenz, Int. J. Mod. Phys. A 30 (2015) no.10, 1543005 [arXiv:1405.3601 [hep-ph]].
[8] N. G. Uraltsev, Phys. Lett. B 376 (1996) 303 [hep-ph/9602324].
[9] M. Neubert and C. T. Sachrajda, Nucl. Phys. B 483 (1997) 339 [hep-ph/9603202].
[10] M. Beneke and G. Buchalla, Phys. Rev. D 53 (1996) 4991 [hep-ph/9601249].
[11] M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Nucl. Phys. B 639 (2002) 389 [hep-ph/0202106].
[12] E. Franco, V. Lubicz, F. Mescia and C. Tarantino, Nucl. Phys. B 633 (2002) 212 [hep-ph/0203089].
[13] A. Lenz and T. Rauh, Phys. Rev. D 88 (2013) 034004 [arXiv:1305.3588 [hep-ph]].
[14] M. Kirk, A. Lenz and T. Rauh, JHEP 1712 (2017) 068 [arXiv:1711.02100 [hep-ph]].
[15] S. Jäger, M. Kirk, A. Lenz and K. Leslie, Phys. Rev. D 97 (2018) no.1, 015021 [arXiv:1701.09183 [hep-ph]]. J. Brod, A. Lenz, G. Tetlalmatzi-Xolocotzi and M. Wiebusch, Phys. Rev. D 92 (2015) no.3, 033002 [arXiv:1412.1446 [hep-ph]]. C. Bobeth, U. Haisch, A. Lenz, B. Pecjak and G. Tetlalmatzi-Xolocotzi, JHEP 1406 (2014) 040 [arXiv:1404.2531 [hep-ph]].
[16] P. Colangelo and F. De Fazio, Phys. Lett. B 387 (1996) 371 [hep-ph/9604425].
[17] J. L. Rosner, Phys. Lett. B 379 (1996) 267 [hep-ph/9602265].
[18] H. Y. Cheng, arXiv:1807.00916 [hep-ph].
[19] F. Gabbiani, A. I. Onishchenko and A. A. Petrov, Phys. Rev. D 68 (2003) 114006 [hep-ph/0303235]. F. Gabbiani, A. I. Onishchenko and A. A. Petrov, Phys. Rev. D 70 (2004) 094031 [hep-ph/0407004].
[20] L. Di Luzio, M. Kirk and A. Lenz, Phys. Rev. D 97 (2018) no.9, 095035 [arXiv:1712.06572 [hep-ph]].
[21] R. J. Dowdall, C. T. H. Davies, R. R. Horgan, G. P. Lepage, C. J. Monahan and J. Shigemitsu, arXiv: 1411.6989 [hep-lat].
[22] N. Carrasco et al. [ETM Collaboration], JHEP 1403 (2014) 016 [arXiv:1308.1851 [hep-lat]].
[23] E. Gamiz et al. [HPQCD Collaboration], Phys. Rev. D 80 (2009) 014503 [arXiv:0902.1815 [hep-lat]].
[24] S. Aoki et al., Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555 [hep-lat]].
[25] S. Aoki et al., Eur. Phys. J. C 77 (2017) no.2, 112 [arXiv:1607.00299 [hep-lat]].
[26] A. Bazavov et al. [Fermilab Lattice and MILC Collaborations], Phys. Rev. D 93 (2016) no.11, 113016 [arXiv:1602.03560 [hep-lat]].
[27] E. Dalgic, A. Gray, E. Gamiz, C. T. H. Davies, G. P. Lepage, J. Shigemitsu, H. Trottier and M. Wingate, Phys. Rev. D 76 (2007) 011501 [hep-lat/0610104].
[28] Y. Aoki, T. Ishikawa, T. Izubuchi, C. Lehner and A. Soni, Phys. Rev. D 91 (2015) no.11, 114505 [arXiv:1406.6192 [hep-lat]].
[29] C. M. Bouchard, E. D. Freeland, C. Bernard, A. X. El-Khadra, E. Gamiz, A. S. Kronfeld, J. Laiho and R. S. Van de Water, PoS LATTICE 2011 (2011) 274 [arXiv:1112.5642 [hep-lat]].
[30] M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Phys. Lett. B 459 (1999) 631 [hep-ph/9808385].
[31] M. Beneke, G. Buchalla, A. Lenz and U. Nierste, Phys. Lett. B 576 (2003) 173 [hep-ph/0307344].
[32] M. Ciuchini, E. Franco, V. Lubicz, F. Mescia and C. Tarantino, JHEP 0308 (2003) 031 [hep-ph/0308029].
[33] H. M. Asatrian, A. Hovhannisyan, U. Nierste and A. Yeghiazaryan, JHEP 1710 (2017) 191 [arXiv:1709.02160 [hep-ph]].
[34] A. G. Grozin, R. Klein, T. Mannel and A. A. Pivovarov, Phys. Rev. D 94 (2016) no.3, 034024 [arXiv:1606.06054 [hep-ph]]. A. G. Grozin, T. Mannel and A. A. Pivovarov, Phys. Rev. D 96 (2017) no.7, 074032 [arXiv:1706.05910 [hep-ph]]. A. G. Grozin, T. Mannel and A. A. Pivovarov, arXiv: 1806.00253 [hep-ph].
[35] M. Beneke, G. Buchalla and I. Dunietz, Phys. Rev. D 54 (1996) 4419 Erratum: [Phys. Rev. D 83 (2011) 119902] [hep-ph/9605259].
[36] A. S. Dighe, T. Hurth, C. S. Kim and T. Yoshikawa, Nucl. Phys. B 624 (2002) 377 [hep-ph/0109088].
[37] C. Davies, J. Harrison, G. P. Lepage, C. Monahan, J. Shigemitsu and M. Wingate, EPJ Web Conf. 175 (2018) 13023 [arXiv:1712.09934 [hep-lat]].

[^0]: *Speaker.

[^1]: ${ }^{1}$ This holds not for D-mixing, see e.g. [2, 3, 4].

[^2]: ${ }^{2}$ Due to time and space restrictions I will not attempt to cite the numerous relevant papers in that field.

