Polarized 3He++ Ion Source for RHIC and an EIC
M. Musgrave*, R. Milner, G. Atoian, E. Beebe, S. Kondrashev, A. Pikin, D. Raparia, J. Ritter, A. Zelenski, J. Maxwell on behalf of the BNL-MIT Polarized 3 He Ion Source Collaboration
Pre-published on:
May 31, 2018
Published on:
June 14, 2018
Abstract
The capability of accelerating a polarized $^3$He ion beam in RHIC would demonstrate an effective polarized neutron beam for the study of new high-energy QCD studies of nucleon structure. This development would be particularly beneficial for the future plans of an Electron Ion Collider (EIC), which could use a polarized $^3$He ion beam to probe the spin structure of the neutron. The proposed polarized $^3$He ion source is based on the Electron Beam Ion Source (EBIS) currently in operation at Brookhaven National Laboratory (BNL). $^3$He gas would be polarized within the 5 T field of the EBIS solenoid via Metastability Exchange Optical Pumping (MEOP) and then pulsed into the EBIS vacuum and drift tube system where the $^3$He will be ionized by the 10 Amp electron beam. The goal of the polarized $^3$He ion source is to achieve $2.5 \times 10^{11}$ $^3$He$^{++}$/pulse at 70\% polarization. An upgrade of the EBIS is currently underway at BNL. The EBIS capability to produce polarized $^{3}$He$^{++}$ is being developed through a collaboration between BNL and MIT.
DOI: https://doi.org/10.22323/1.324.0020
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.