
P
o
S
(
B
E
A
U
T
Y
2
0
1
8
)
0
4
3

Rare Leptonic B decays

Gilberto Tetlalmatzi-Xolocotzi∗
Nikhef, Science Park 105, NL-1098 XG Amsterdam, Netherlands
E-mail: gtx@nikhef.nl

The transitions Bs,d → `+`− (for ` = e,µ,τ), although extremely suppressed within the SM, are
exceptionally clean channels particularly sensitive to New Physics contributions. So far only the
branching ratio for the process Bs → µ+µ− has been measured experimentally and, although
the results are in agreement with the SM prediction, there is still room for NP effects. Here we
provide an overview of the theoretical status of rare decays. We present strategies that can allow
us to discriminate between different NP scenarios. Finally, we include a discussion of the effects
of nontrivial new CP violating phases on the observables associated with Bs→ µ+µ−.
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1. Introduction

In the Standard Model (SM) the transitions Bs,d → `+`− are the result of purely quantum
mechanical processes, i.e. they are the result of the interchange of virtual particles at the loop level.
Moreover the associated decay probabilities are proportional to the square of the mass of the lepton
in the final state. Therefore, for electrons and muons (`= e, µ) they turn out to be extremely small
(helicity suppression). For `= τ , the helicity suppression is not very effective due to the relatively
big value of mτ , however τ leptons are difficult to be reconstructed experimentally. Due to these
features the processes Bs,d→ `+`− receive the generic name of “rare B decays”. They have unique
properties that make them particularly attractive, for instance non perturbative contributions are
well under control. Moreover, they are particularly sensitive to New Physics (NP) contributions
from scalar and pseudoscalar particles [1–3]. The current experimental and theoretical status of the
different rare decays is summarized in Fig. 1. At the moment only Bs→ µ+µ− has been measured
experimentally, the combination of the LHCb and CMS determinations yields [4, 5]

B(Bs→ µ
+

µ
−)|LHCb′17+CMS′13 = (3.00±0.5)×10−9, (1.1)

in good agreement with the SM prediction (the usage of the “B” notation will be explained later).
There is also a determination by ATLAS from 2016 that shows compatibility with the SM at the
2 σ level and can be found in [6].

Here we will give an overview of the theory behind leptonic rare B decays (for the study of NP
in semileptonic decays see for example [7–10]). In addition to the branching ratio, we present
extra observables (τs

``, A ``
∆Γs

, C`` and S``) that give us the power to unveil potential NP effects and
to discriminate among different models. In view of the current experimental information available
we show that NP effects are allowed. Furthermore, we describe how having NP short distance
contributions independent of the flavour of the lepton in the final state can lead to enhancements
on the decay channels B(Bs,d → e+e−) making them experimentally accessible while keeping
B(Bs,d → τ+τ−) as in the SM. In the last part, we comment on the possibility of using B meson
rare decays for pinning down NP phases.
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Figure 1: Current experimental and theoretical status of the different rare B meson decays.
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2. Theoretical Formalism

The Hamiltonian to describe B̄0
s → `+`− and B0

s → `+`− transitions is

Heff =−
GF√
2π

V ∗tsVtbα
[
C``

10O10 +C``
P OP +C``

S OS +C``′
10 O′10 +C``′

S O′S +C``′
P O′P

]
+h.c., (2.1)

where the heavy degrees of freedom have been integrated out and are described by the Wilson co-
efficients C``

10,S,P and C``′
10,S,P. In the SM C10 is the only non-vanishing Wilson Coefficient and turns

out to be real whereas C``
S,P =C``′

10,S,P = 0. The explicit expressions for the operators in Eq. (2.1) are

O10 = (s̄γµPLb)( ¯̀γµ
γ5`), OP = mb(s̄PRb)( ¯̀γ5`), OS = mb(s̄PRb)( ¯̀̀ )

O′10 = (s̄γµPLb)( ¯̀γµ
γ5`), O′P = mb(s̄PRb)( ¯̀γ5`), O′S = mb(s̄PRb)( ¯̀̀ ) (2.2)

with PL/R ≡ 1
2 (1∓ γ5).

For future convenience, we introduce the scalar and pseudoscalar functions Ps
`` and Ss

`` connected
with the Wilson coefficients introduced in Eq. (2.1) according to

Ps
`` ≡

C``
10−C``

10
′

CSM
10

+
M2

Bs

2m`

(
mb

mb +ms

)[
C``

P −C``
P
′

CSM
10

]
= |Ps

``|eiϕP ,

Ss
`` ≡

√
1−4

m2
`

M2
Bs

M2
Bs

2m`

(
mb

mb +ms

)[
C``

S −C``′
S

CSM
10

]
= |Ss

``|eiϕS .

Using the effective Hamiltonian in Eq. (2.1), the corresponding SM “theoretical” branching fraction
can be computed leading to [11]

B(Bs→ `+`−)|SM = m2
`

τBsG
4
FM4

W sin4
θW

8π5

∣∣∣VtsV ∗tb
∣∣∣2 f 2

Bs
MBs

√
1− m2

`

M2
Bs

∣∣∣CSM
10

∣∣∣2, (2.3)

where the non-perturbative hadronic effects are accounted for by the decay constant fBs calculated
through lattice techniques [12–29] with a current precision of O(2%). So far Bs− B̄s mixing has
been ignored; once this effect is taken into account, the dynamics of the rare decays becomes time
dependent. To discuss in more detail this effect, we make a small digression to introduce some
basic terminology in neutral B mixing. The time evolution of the two state system |Bs(t)〉−|B̄s(t)〉
is given by

i
d
dt

(
|Bs(t)〉
|B̄s(t)〉

)
=

(
M̂s− i

2
Γ̂

s
)( |Bs(t)〉
|B̄s(t)〉

)
, (2.4)

where M̂s and Γ̂s are 2× 2 matrices that due to electroweak interactions are non-diagonal. The
off-diagonal elements of M̂s, Ms

12 = Ms∗
21, receive contributions from virtual internal particles. On
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the other hand the off-diagonal entries of Γ̂s, Γs
12 = Γs∗

21, receive contributions from on-shell par-
ticles only. After diagonalizing M̂s− i

2 Γ̂s the physical states |BH(t)〉 and |BL(t)〉 are found. The
corresponding masses and decay rates are denoted by Ms

H , Ms
L and Γs

H , Γs
L respectively. In this

report we are interested in the following masses and decay rate differences

∆Ms = Ms
H −Ms

L ∆Γs = Γ
s
H −Γ

s
L. (2.5)

We now continue with the our main line of discussion and summarize the steps followed towards
the determination of the branching ratio for the transitions Bs→ `+`− once the time dependence is
considered. Since measuring the helicities of the final states is challenging to perform, we begin
by adding over the possible final states helicities

Γ(B0
s (t)→ `+`−)≡ ∑

λ=L,R
Γ(B0

s (t)→ `+
λ
`−

λ
).

Moreover, B0
s and B̄0

s tagging is not easy to do in experiments, thus we consider the untagged rate

〈Γ(Bs(t)→ `+`−)〉= Γ(B0
s (t)→ `+`−)+Γ(B̄0

s (t)→ `+`−). (2.6)

What is measured experimentally is the time integrated branching ratio [1]

B
(
Bs→ `+`−

)
≡ 1

2

∫
∞

0
〈Γ(Bs(t)→ `+`−)〉dt. (2.7)

In the remainder of this work we will refer to B (Bs→ `+`−) as the “experimental” branching ratio.

The connection between the “experimental” branching fraction and its SM “theoretical” counterpart
B(Bs→ `+`−)|SM is established using the effective Hamiltonian in Eq. (2.1) [2]

B(Bs→ `+`−)=B(Bs→ `+`−)|SM×
{[

1+ ys cos(2ϕP−φ NP
s )

1− y2
s

]
|Ps

``|2+
[

1− ys cos(2ϕS−φ NP
s )

1− y2
s

]
|Ss

``|2
}
,

(2.8)
where the parameter ys = ∆Γs/Γs accounts for neutral B mixing effects.

The phase φ NP
s quantifies possible NP contributions to mixing and can be determined using exper-

imental information from the transition B0
s → J/ψφ and processes with similar dynamics leading

to [30–32]

φ
NP
s = (0.4±1.9)◦. (2.9)

In the absence of NP effects, Ps
`` = 1 and Ss

`` = 0, hence the experimental branching fraction in
Eq. (2.7) reduces to B(Bs→ `+`−)|SM = 1/(1−ys)×B(Bs→ `+`−)|SM. Thus, even in the purely

3



P
o
S
(
B
E
A
U
T
Y
2
0
1
8
)
0
4
3

Rare Leptonic B decays Gilberto Tetlalmatzi-Xolocotzi

SM case, and as the result of neutral meson mixing, there is a mismatch between the experimen-
tal branching ratio introduced in Eq. (2.8) and the theoretical one in Eq. (2.3) given by the factor
1/(1− ys) [1].

Using Eqs. (2.3) and (2.8) we obtain [33, 34]

B(Bs→ `+`−)|SM = (3.57±0.16)×10−9, (2.10)

as discussed in [35] possible electromagnetic corrections below mb lead to modifications in Eq. (2.10)
of O(1%).

To probe for NP effects we consider the ratio

Rs
`` ≡

B(Bs→ `+`−)

B(Bs→ `+`−)|SM
=

[
1+ ys cos(2ϕ``

Ps
−φ NP

s )

1+ ys

]
|P̀ `|2 +

[
1− ys cos(2ϕ``

Ss
−φ NP

s )

1+ ys

]
|S``|2.

(2.11)
If we consider trivial CP violating phases ϕ``

Ps
,ϕ``

Ss
∈ {0,2π} then Ps

µµ and Ss
µµ are real quantities.

The ratio in Eq. (2.11) becomes

Rs
`` ≈ Ps 2

`` +Ss 2
`` , (2.12)

and the geometrical region described by the observable is a circle of radius
√

Rs
`` in the plane

defined by Ps
`` and Ss

``. Using Eqns. (1.1) and (2.10) we proceed with the corresponding numerical
evaluation obtaining

Rs
µµ

∣∣
LHCb’17+CMS

= 0.84±0.16. (2.13)

The allowed region corresponding to Eq. (2.13) leads to the blue circular band in the Ps
µµ − Ss

µµ

plane shown in Fig. 2 [33]. We can see how the observable Rs
µµ does not define uniquely the values

that Ps
`` and Ss

`` can assume and how the SM point is compatible with state-of-the-art theoretical
and experimental results. Interestingly, non-negligible NP effects are allowed but the values of the
NP parameters Ps

`` and Ss
`` are rather unconstrained. To obtain stronger bounds on the values of Ps

``

and Ss
``, more observables sensitive to these NP contributions are required. This will be the topic

of the following section.

3. The Observable A ``
∆Γs

The untagged decay rate gives us access to the observable A ``
∆Γs

sensitive to the scalar and
pseudoscalar functions Ps

`` and Ss
`` [1]:

〈Γ(Bs(t)→ `+`−)〉 ∝ e−t/τBs
[
cosh(yst/τBs)+A ``

∆Γs
sinh(yst/τBs)

]
,

4
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Figure 2: Allowed regions for Ps
µµ and Ss

µµ considering the current measurements of R̄s
µµ and A µµ

∆Γs
. The

dashed straight lines correspond to hypothetical values for A µµ

∆Γs
.

where

A ``
∆Γs

=
|Ps

``|2 cos(2ϕ``
Ps
−φ NP

s )−|Ss
``|2 cos(2ϕ``

Ss
−φ NP

s )

|Ps
``|2 + |Ss

``|2
. (3.1)

The observable A ``
∆Γs

obeys the model-independent bounds −1 ≤A ``
∆Γs
≤ +1, in particular within

the SM we have A ``
∆Γs
|SM =+1. The “effective life-time”

τ
s
`` ≡

∫
∞

0 t 〈Γ(Bs(t)→ `+`−)〉dt∫
∞

0 〈Γ(Bs(t)→ `+`−)〉dt
(3.2)

is equivalent to A ``
∆Γs

. As a matter of fact both observables are related through

A ``
∆Γs

=
1
ys

[
(1− y2

s )τ
s
``− (1+ y2

s )τBs

2τBs− (1− y2
s )τ

s
``

]
.

The first determination of A µµ

∆Γs
(associated with the decay Bs → µ+µ−) has been performed by

LHCb [4]

τ
s
µµ = [2.04±0.44(stat)±0.05(syst)]ps. (3.3)

This result can be converted into

A µµ

∆Γs
= 8.24±10.72, (3.4)

which saturates the model-independent bounds previously discussed. However, future improve-
ments on the measurement of A µµ

∆Γs
will allow us to obtain stronger constraints on Ps

µµ and Ss
µµ .

For instance, setting A ``
∆Γs

=−1,0,1 singles out straight lines in Fig. 2

5
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B(Bs → µ+µ−)

R
s

µµ

B(Bs → µ+µ−)SM

P sµµ, S
s
µµ

Aµµ∆Γs

−1 ≤ Aµµ∆Γs
≤ +1

Universal
New Physics
Scenario

B(Bs,d→τ+τ−)

B(Bs,d→τ+τ−)SM
∼ 1

0.7 ≤ B(Bd→µ+µ−)

B(Bd→µ+µ−)SM
≤ 1.1

0 ≤ B(Bs,d→e+e−)

B(Bs,d→e+e−)SM
≤ 2 × 105

Experiment

Theory

Experiment

Theoretical
Range

1

Figure 3: Strategy to map out possible CP-violating NP contributions to Bs→ µ+µ− into other rare B decay
observables.

4. Impact of Bs→ µ+µ− on other rare decays

Working under the assumption of real Ps
µµ and Ss

µµ , we will explore the effects of the bounds
established from the experimental results in Eqs. (2.13) and (3.4) on other rare decays. To achieve
this target, we have to make assumptions to correlate the Wilson coefficients Cµµ

S,P for Bs→ µ+µ−

with those for the transitions Bs→ e+e−,τ+τ− and Bd→ e+e−,µ+µ−,τ+τ−. In particular we will
explore the implications of universal Wilson coefficients: Cµµ(′)

S,P =Cττ(′)
S,P =Cee(′)

S,P and refer to this
model as “Universal New Physics Scenario” (UNPS). The full strategy to be followed is summa-
rized in the flow chart in Fig. 3.

4.1 New Physics in Bd → µ+µ−

Let us first discuss potential NP effects on Bd → µ+µ−. We start by considering the ratio

Uds
µµ ≡

√
|Pd

µµ |2 + |Sd
µµ |2

|Ps
µµ |2 + |Ss

µµ |2
∝

( fBs

fBd

)2∣∣∣Vts

Vtd

∣∣∣2 B(B0
d → µ+µ−)

B(B0
s → µ+µ−)

. (4.1)

In the SM, this observable assumes the value Uds
µµ |SM = 1. However, possible NP effects can induce

important deviations. Current data give Uds
µµ = 1.26± 0.49, in good agreement with the SM. Let

us now briefly discuss the consequences of the UNPS where the Wilson coefficients associated
with the transitions b→ dµ+µ− and b→ sµ+µ− turn out to be the same. As shown in [33] the
final result is a linear correlation between B(Bs→ µ+µ−) and B(Bd → µ+µ−). To quantify the
possible NP contributions we evaluate the ratio in Eq. (2.11) adapted for b→ d transitions yielding

0.65≤ Rd
µµ ≤ 1.11. (4.2)

4.2 New Physics in Bd,s→ τ+τ− and Bd,s→ e+e−

To study the implications of the UNPS on the decays Bs,d → τ+τ−, e+e− we start by writing
the following equations that establish the relationship between Ps

µµ , Ss
µµ and the corresponding

functions for generic leptons in the final state

6
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Ps
`` =

(
1− mµ

m`

)
C10 +

mµ

m`
Ps

µµ , Ss
`` =

mµ

m`

√√√√√√1−4 m2
`

M2
Bs

1−4
m2

µ

M2
Bs

Ss
µµ . (4.3)

To assess the implications of the UNPS on B(Bs→ τ+τ−) we substitute m` = mτ in Eq. (4.3). The
resulting ratio

mµ

mτ

= 0.059 (4.4)

in front of the potential NP contributions in Ps
µµ and Ss

µµ on the right-hand side of Eq. (4.3) acts as a
suppression factor. Therefore, within the UNPS the branching fraction B(Bs→ τ+τ−) experiences
mild deviations with respect to the SM prediction. The ratio introduced in Eq. (2.11) leads to

0.8≤ Rs
ττ ≤ 1.0. (4.5)

Additionally, the UNPS allows us to predict

0.995≤A µµ

∆Γs
≤ 1.000, (4.6)

where again there is a tiny deviation with respect to the SM value. The effects on the corresponding
observables for Bd → τ+τ− are similar and can be found in [33].

So far, the predictions of the UNPS have been consistent with the expectations from the SM. How-
ever, for the decays Bs,d→ e+e− the effect can potentially be dramatically different. To understand
this result consider that for `= e the functions Ps

µµ and Ss
µµ are mapped out into Ps

ee and Ss
ee through

the ratio
mµ

me
= 206.77. (4.7)

Unlike the case for the τ leptons in Eq. (4.4), our “conversion factor” in Eq. (4.7) enhances the
potential NP contributions inside Ps

µµ and Ss
µµ . Thus, instead of acting as a suppressor, the mass

of the electron works as an enhancement factor. Within the UNPS we can make the following
predictions for B(Bs→ e+e−):

0≤ Rs
ee ≤ 1.7×105, 0≤ B(Bs→ e+e−)

B(Bs→ µ+µ−)
≤ 4.8. (4.8)

Surprisingly the upper bound of the previous inequalities lies just a factor of 20 below the limit
that CDF determined in 2009. In view of these results, we encourage the experimental search of
Bs→ e+e−, since any measurement of B(Bs→ e+e−) within the capabilities of current or future
experiments would be an unambiguous signal of NP. For Bd → e+e− the enhancement is such
that the branching fraction is just one order of magnitude below the results presented in Eq. (4.8).
The pattern of predictions discussed requires that the effective couplings (Wilson coefficients) are
independent of the mass of the lepton in the final state, this is a very restrictive condition that does
not materialize in scenarios such as the Minimal Supersymmetric SM.

7
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5. Impact of New Sources of CP violation

Until now only trivial values for the CP violating phases ϕ
µµ

P and ϕ
µµ

S have been assumed. In
this section we relax this condition and discuss the impact of non-vanishing phases on Bs→ µ+µ−.

Firstly, we use the following time-dependent asymmetry

Γ(B0
s (t)→ µ

+
λ

µ
−
λ
)−Γ(B̄0

s (t)→ µ
+
λ

µ
−
λ
)

Γ(B0
s (t)→ µ

+
λ

µ
−
λ
)+Γ(B̄0

s (t)→ µ
+
λ

µ
−
λ
)
=

C λ
µµ cos(∆Mst)+S λ

µµ sin(∆Mst)

cosh(yst/τBs)+A λ ,µµ

∆Γs
sinh(yst/τBs)

, (5.1)

to introduce the observables [1, 2]: C λ
µµ and S λ

µµ . They are given by

C λ
µµ = −ηλ

[
2|Ps

µµSs
µµ |cos(ϕµµ

P −ϕ
µµ

S )

|P|2 + |S|2

]
≡−ηλ Cµµ , (5.2)

S λ
µµ =

|Ps
µµ |2 sin(2ϕ

µµ

P −φ NP
s )−|Ss

µµ |2 sin(2ϕ
µµ

S −φ NP
s )

|Ps
µµ |2 + |Ss

µµ |2
≡Sµµ , (5.3)

where ηL/R =±1 defines the helicity of the final state µ leptons. Within the SM, Cµµ = Sµµ = 0.

Notice that the observables A λ ,µµ

∆Γs
, Cµµ and Sµµ do not depend on the helicity of the final state

leptons. Moreover they are extremely clean since they are free from hadronic parameters. The
three CP asymmetries are not independent because they fulfil the condition

(A µµ

∆Γs
)2 +(Sµµ)

2 +(Cµµ)
2 = 1. (5.4)

Unfortunately, in general A µµ

∆Γs
, Cµµ , Sµµ and R̄s

µµ do not provide sufficient information to fully

determine the magnitudes and phases of all the complex coefficients Cµµ(′)
S and Cµµ(′)

P inside Ps
µµ

and Ss
µµ . This is only possible within specific frameworks where extra assumptions reduce the

number of unknowns. Here we consider the SMEFT [36], where the following conditions hold:
Cµµ

P = −Cµµ

S , Cµµ

P
′ = Cµµ

S
′. Moreover, we explore two cases found frequently in the literature:

Cµµ

S = 0 and Cµµ

S
′ = 0. If we introduce the parameter x = Cµµ ′

S /Cµµ

S , then these situations cor-
respond to x→ ∞ and x = 0, respectively. It is then possible to show that only two independent
parameters are required we choose them to be |Ss

µµ | and ϕ
µµ

S . The full set of Wilson coefficients
can then be related to |Ss

µµ | and ϕ
µµ

S as explained in [37].

We illustrate our strategy with an example, considering the following set of hypothetical measure-
ments:

A µµ

∆Γs
= 0.58±0.20, Sµµ =−0.80±0.20, Cµµ = 0.16±0.20. (5.5)

We perform χ2-fits to our assumptions x→∞ and x = 0. Then, we profile over the two independent
parameters to obtain the regions shown in Fig. 5. On the left side of the figure, the observables R̄s

µµ

and A µµ

∆Γ
single out fours regions compatible with our hypotheses. If, in addition, we include Sµµ ,

8
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we can eliminate the two subregions enclosed inside the dashed contours leading to the plot on the
right. Here both scenarios (x = 0 and x = ∞) are still possible. However the sign of Cµµ solves this
ambiguity since in our example we have 0 < Cµµ for x = 0 whereas Cµµ < 0 for x→ ∞.
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0.0
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0.8

1.0

-180 -120 -60 0 60 120 180
0.0
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Figure 4: χ2 fits used in the determination of the allowed regions compatible with the SMEFT model: x = 0
and x = ∞ corresponding to Cµµ

S
′ = 0 and Cµµ

S = 0 respectively.

6. Outlook

In spite of being strongly suppressed in the SM, the decay processes Bs,d → `+`− have the
potential to open new avenues in our quest for NP effects and offer a rich phenomenological struc-
ture. The measurement of the branching fraction B(Bs→ µ+µ−) has been found consistent with
the SM prediction. However, it leaves plenty of room for new scalar and pseudoscalar interac-
tions. The observable A µµ

∆Γs
arises once neutral Bs mixing is taken into account and is a powerful

tool for solving ambiguities between different NP scenarios. Under the assumption of universal
short-distance contributions, we have mapped out the current constraints on the observables for
Bs → µ+µ− into the corresponding ones for Bs,d → τ+τ− and Bs,d → e+e− showing how in the
first case possible NP contributions are suppressed by a factor 1/mτ . In contrast, in the second case
they can be dramatically enhanced by the ratio 1/me, having the potential of becoming accessible
within the realm of current and foreseeable experiments. Hence their search is strongly encouraged.
Finally, in addition to the branching fractions, rare B decays provide extra observables sensitive to
CP-violating NP phases that can be extremely valuable for unveiling new sources of CP violation.
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