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Hidden-charm and hidden-bottom pentaquark states
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We investigate the hidden-charm pentaquarks and the hidden-bottom pentaquarks as, respectively,
D̄(∗)Λc, D̄(∗)Σ

(∗)
c and B̄(∗)Λb, B̄(∗)Σ

(∗)
b molecules coupled to the five-quark states [4]. The hidden-

charm and -bottom pentaquark states have been described by taking into account both the meson-
baryon channels, which encodes the dynamics at long distances, and a compact five quark core,
which encodes the short distance part. As a result of our calculation, we find that, unlike the
charmed sector, in the bottom sector, the pion exchange interaction is strong enough to produce
resonant and bound states. As the hidden-bottom pentaquarks are more likely to form than their
hidden-charm counterparts, the bottom sector is the more interesting environment to look for new
pentaquark states.
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1. Introduction

In 2015, the Large Hadron Collider beauty experiment (LHCb) collaboration reported the
observation of two hidden-charm pentaquarks, P+

c (4380) and P+
c (4450), in Λ0

b → J/ψK−p de-
cay [1–3]. These two pentaquark states are found to have masses of 4380± 8± 28 MeV and
4449.8±1.7±2.5 MeV, with corresponding widths of 205±18±86 MeV and 39±5±19 MeV.
The preferred assigned quantum numbers (JP

P+
c (4380),J

P
P+

c (4450)) = (3/2−,5/2+) give the best fit so-
lution, but (3/2+,5/2−) and (5/2−,3/2+) are also acceptable.

Even before the observation by LHCb, extensive studies for light pentaquark and multi-quark
states have been performed. For example, in 2012, Yuan et al. in [5] studied the uudcc̄ and udscc̄
systems by the non-relativistic harmonic oscillator Hamiltonian based on three kinds of interac-
tions: a chromomagnetic interaction, a flavor-spin-dependent interaction and an instanton-induced
interaction. In [6], Santopinto et al. investigated the hidden-charm pentaquark states as five-quark
compact states showing that the ground state multiplet of the charmonium pentaquark states is
a SU f (3) octet, predicting the octet pentaquark masses and suggesting possible decay channels
for the hidden-charm pentaquark states. The hidden-charm and hidden-bottom pentaquark masses
have been calculated also by Wu et al. in [7], by means of a color-magnetic interaction between
the three light quarks and the cc̄ (bb̄) pair in a color octet state. The hidden-charm pentaquark
states have also been investigated by Takeuchi et al. [8] by a quark cluster model. In [8] she dis-
cussed also the structure of the five-quark states which appears in the scattering states. The P+

c

pentaquarks have been found just below the D̄Σ∗c and D̄∗Σc thresholds. Thus, the D̄Σ∗c and D̄∗Σc

molecular components are expected to be dominant [9–22]. The experience tells us that, when
more than one quantum state is allowed for a given quantum number configuration, the hadronic
resonant states are unavoidably mixtures of these states. Therefore, an important issue is to clarify
how these components are mixed in physical hadrons. In the current problem of pentaquark,
there are two competing sets of channels: the meson-baryon channels and the five-quark channels.
The coupling to the five-quark states is described as a short-range potential between the meson and
the baryon, while the long-range force is given by the one-pion exchange potential. In this way we
could study the bound and resonant hidden-charm and hidden-bottom pentaquark states by solving
the coupled channel Schrödinger equation for the isospin I = 1

2 states with JP = 1
2
−, 3

2
−, and 5

2
−

.

2. The model

As we have discussed previously, the two competing sets of channels to take into account in
order to study the pentaquark states are the meson-baryon (MB) channels, which describe the dy-
namics at long distances and the five-quark (5q) channels, which describe the dynamics at short
distances, i.e. , in the order of 1 fm or less (see Fig. 1). The bound and resonant states are ob-
tained by solving the coupled-channel Schrödinger equation for ψMB, with the one pion exchange
potential, OPEP, V π(r), and a five-quark 5q potential, V 5q(r):(

KMB +V π +V
1

E−H5qV †
)

ψ
MB = Eψ

MB. (2.1)

where the KMB is the kinetic energy of each MB channel and and H5q stands for the 5q channels.
The last term on the left-hand side is due to the elimination of the 5q channels, and is regarded
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as an effective interaction for the MB channels. Thus, the total interaction for the MB channels is
defined by

U =V π +V
1

E−H5qV †. (2.2)

Figure 1: One pion exchange potential (left) and the effective interaction due to the coupling to the five-
quark channel (right). The meson-baryon channels are represented by D and Yc, i and j are, respectively, the
initial and the final channels, while a five-quark channel is denoted by α .

3. Results

Figure 2: Bound and resonant state energies of the hidden-charm molecules (solid lines) with various cou-
pling constants f. Dot-dashed lines are the D̄Λc and D̄∗Λc thresholds. Dashed lines are the D̄Σc, D̄Σ∗c , D̄

∗Σc

and D̄∗Σ∗c thresholds. The lowest threshold, D̄Λc, is at 4150 MeV and the state whose energy is lower than
the threshold is a bound state (APS copyright [4]).

Fig. 2 shows the numerical results of the hidden-charm meson-baryon molecules: the bound
and resonant state energies of the hidden-charm molecules are presented as a function of different
values of the coupling constant f

f0
, which is a free parameter introduced to parametrise the coupling

strength between the meson-baryon and the compact five-quark channels.
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The filled circles show the minimum coupling constant value necessary for the formation of
a resonant or bound state. For example, for JP = 5

2
−

, one resonance appears below the D̄∗Σ∗c
threshold when the coupling constant f

f0
is larger than 25. When the energy of a resonant state

is lower than the lowest threshold, which in the charmed sector is D̄Λc, about 4150 MeV, the
resonant state becomes a bound state. We observe that in these calculations all the meson-baryon
components and the compact structure of the pentaquark states are taken into account at the same
time, by solving the coupled channel Schrödinger equation 2.1, whose eigenvalues, plotted in Fig.
2 as functions of the coupling constant f

f0
, are the resonant and the bound state energies. Thus,

a resonant or a bound state arises from the interactions between all the meson-baryon and the
compact five-quark channels and the fact that a state appears close to a particular meson-baryon
threshold has not a particular meaning.

In the hidden-charm sector, the one pion exchange potential (OPEP) is not enough strong to
produce bound and resonant pentaquark states. In fact, as one can see from Fig. 2, no states are
produced when the coupling constant f

f0
is switched off, f

f0
= 0.

Figure 3: Bound and resonant state energies of the hidden-bottom molecules (solid lines) with various
coupling constants f. Dot-dashed lines are the B̄Λb and B̄∗Λb thresholds. Dashed lines are the B̄Σb, B̄Σ∗b, B̄

∗Σb

and B̄∗Σ∗b thresholds. The lowest threshold, B̄Λb, is at about 10900 MeV and the state whose energy is lower
than the threshold is a bound state (APS copyright [4]).

Fig. 3 is the equivalent of fig. 2 but for the bottom sector. The bottom sector is more interest-
ing as many resonant and bound states appear. As one can see from Fig. 3, in fact, unlike the
charmed sector, some bound states are produced even without introducing the five-quark potential,
i.e. , even when f

f0
= 0. The only possibility is that the attractive interaction provided by OPEP is

strong enough to bind the meson and baryon in order to produce stable hidden pentaquark struc-
tures. Moreover, the number of resonant and bound states increases when one switches on the 5q
potential.
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4. Conclusion

This study showed how the negative parity hidden-charm and hidden-bottom pentaquark states
are produced from the interplay between the S-wave configurations of open flavour channels and
a compact five-quark core. We found that, in the hidden-bottom sector, the pentaquark states are
produced even without introducing a coupling interaction between the compact five-quark configu-
ration and the meson-baryon molecular configuration. Thus, as a matter of fact, the hidden-bottom
pentaquark states are more likely to form rather than their hidden-charm counterparts [4]. For
this reason, the hidden-bottom sector is the more interesting environment to search the pentaquark
states and we encourage the experimentalists to search the hidden-bottom pentaquark states [4].
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