
P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Policy Driven Data Management and Data
Federations

Patrick Fuhrmann∗

DESY
E-mail: patrick.fuhrmann@desy.de

Marica Antonacci
INFN/Bari
E-mail: marica.antonacci@ba.infn.it

Giacinto Donvito
INFN/Bari
E-mail: giacinto.donvito@ba.infn.it

Oliver Keeble
CERN
E-mail: oliver.keeble@cern.ch

Paul Millar
DESY
E-mail: paul.millar@desy.de

The core activity within the newly created “eXtreme DataCloud” project will be the policy-driven
orchestration of federated data management for data intensive sciences like High Energy Physics,
Astronomy, Photon and Life Science. Well-known experts in this field will work on combining
already established data management and orchestration tools to provide a highly scalable solution
supporting the entire European Scientific Landscape. The work will cover “Data Life Cycle Man-
agement” as well as smart data placement on meta data, including storage availability, network
bandwidth and data access patterns. Mechanisms will be put in place to trigger computational
resources based on data ingestion and data movements. This paper presents the first architecture
of this endeavour.

International Symposium on Grids and Clouds (ISGC) 2018 in conjunction with Frontiers in
Computational Drug Discovery
16-23 March 2018
Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:patrick.fuhrmann@desy.de
mailto:marica.antonacci@ba.infn.it
mailto:giacinto.donvito@ba.infn.it
mailto:oliver.keeble@cern.ch
mailto:paul.millar@desy.de


P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

1. Introduction

In November 2017, the “eXtreme DataCloud” (XDC) project was launched within the frame-
work of the EU Horizon 2020 framework, targeting the development of scalable technologies for
federating storage resources and the management of data in highly distributed computing environ-
ments. The project will last for 27 months and combines the expertise of 8 large European orga-
nizations. The targeted platforms are the current and next generation e-Infrastructures deployed in
Europe, such as the European Open Science Cloud (EOSC)[20], EGI, the Worldwide LHC Com-
puting Grid (WLCG) and the computing infrastructures that will be funded by the upcoming calls.

The solutions provided by XDC will be based on already well established data manage-
ment components as there are dCache[11], EOS[13], FTS[14] and the INDIGO Orchestrator[18],
Onedata[21] and many more. The targeted scientific communities, represented within the project
itself, are from a variety of domains, like astronomy (CTA)[24], Photon Science (European X-
FEL)[9], High Energy Physics (LHC)[25], Life Science (LifeWatch)[26] and others.

The work will cover “Data Life Cycle Management” and smart data placement on meta data,
including storage availability, network bandwidth and data access patterns. The inevitable problem
of network latency is planned to be tackled by smart caching mechanisms or, if time allows, using
deep learning algorithms to avoid data transfers in the first place. Furthermore, data ingestion
and data movement events, reported to the centralized INDIGO orchestration engine can trigger
automated compute processes, starting from meta-data extraction tools to sophisticated work flows,
e.g. to pre-analyze images from Photon Science or Astronomy detectors.

2. Target communities and high level objectives

According to the project’s work program[1], the high-level objective of this work package is
the orchestrated placement of scientific data in the area of Exabytes on the site (IaaS) as well as on
the federated storage level. In the context of this work, placement may either refer to the media the
data is stored on, to guarantee a requested Quality of Service, or the geographical location, to move
data as close to the compute facility as possible to overcome latency issues in geographically dis-
tributed infrastructures. In the latter case, data might either be permanently moved, or temporarily
cached. It is envisioned that data migration can either be enforced by static policies at the local or at
the federated level or as a result of pattern recognition technologies, including utilizing information
on metadata or short term and historical access patterns. Long term policy driven data movements
are referred to as“Data Life Cycle Management”. Data Life Cycle may not only concern data loca-
tion and data storage quality control but similarly policy driven changes of low level meta data, like
“Access Control Lists” to make data publicly available after a predefined “grace period”. Finally,
this work package will enable the orchestration of compute activities based on events produced as
a result of data ingestion and on automatic or condition driven data movements.

In order to work towards realistic scenarios, XDC is linked to existing high throughput sci-
entific infrastructures. In the case of this particular work package, this is primaray the Europen
XFEL[9] and the LHC Computing Grid (WLCG[8]. However, in anticipation of upcoming new
challanges, e.g. the Square Kilometer Array, SKA[7], those scientific demonstrators should be
seen as role models for new endeavours in the Exabyte data range. Furthermore, as the XDC fund-

1



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

ing period is limited to 27 months, it is quite evident that new functional improvements provided
by XDC can only be implemented within the framework of already existing software stacks. As
WLCG is undoubtedly the most advanced distributed computing infrastructure in Europe, it is not
surprising that this particular work within XDC, to a large extend, is based on a selection of WLCG
software components. See section 3 ”Available components” for details.

2.1 Gap analysis and advanced features

E-Infrastructures or experiment frameworks have to combine a variety of distributed resources
to successfully manage their work flows. Those resources can be the actual data sources, possible
HPC cluster systems for fast analysis, large low latency storage systems and long term archiving
endpoints. Currently those entities are provided by different resource provides with their propri-
etary interfaces. The orchestration of those resources is performed within each individual experi-
ment framework as indicated in Figure 1. Although this approach is expensive, it is generally not
an issue for large scientific infrastructures like WLCG or others. However, smaller groups might
not be able to afford such a professional setup. The alternative XDC is envisioning, is to inter-
face the resources at the European infrastructure level and make them available, including high
level services, like data transfer and data life cycle orchestration, through standard interfaces to the
scientific communities. This not only significantly reduces the software stack of the communities
but also simplifies the work of the storage providers as they only have to handle a single proxy
framework, being shared by all their clients. (See Figure 2)

Figure 1: Current infrastructure management

Moving from this high level goal to the actual technical implementation, we found three major
areas we would have to work on:

• Quality of Service in storage: When following the life cycle of data, we found that, de-
pending on the processing step performed, different capabilities of the data storage space
are required. They range from high throughput, low latency storage to long term archive.
Consequently, if the data life cycle process needs to be abstracted, those capabilities have to
be defined with a common vocabulary and storage endpoints need to be able to understand
and acknowledge storage requests with those capabilities.

2



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

Figure 2: Current infrastructure management

• Caching Distributed infrastructures require additional precautions by the remote clients or
services, as data links can be slow, or interrupted and suffer from inevitable latencies. One
way of coping with those drawbacks is to provide caching, close to the data sinks.

• Orchestration In order to allow an arbitrary work flow to be applied to data, certain inter-
faces have to be implemented. In particular when data is ingested into a global system, the
system must be informed and based on a common language, actions, like preprocessing or
data replication may have to be performed. Moreover, interfaces to the compute world are
required to started processes or functions on grids or clouds on events happing within the
system infrastructure.

After the next section, describing the components we have chosen for XDC, we will outline the
architecture we are envisioning to implement the three areas described above.

3. Available components

As described initially, neither the time nor our funding capacity of XDC will allow us to
implement a system from scratch, providing all features we listed in the sections above. However,
almost all components we need for our endeavour are already available and most importantly are
in production for more than a decade. This chapter is briefly describing those components as they
are needed to understand subsequent chapters on the XDC architecture.

3.1 The file transfers service, FTS

FTS[14] is a data movement service developed at CERN that reliably copies data from one
Storage URL to another. It is based on 3rd party copy to achieve this and implements mechanisms

3



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

to ensure reliability of the copies and an internal scheduler to ensure an optimal usage of the net-
work channels and bandwidth maintaining a high availability of the service. It is a mature product
extensively used in production by many Virtual Organizations, including the LHC experiments as
a fundamental component of their data management system to move data from one Grid site to
another.

3.2 Storage Federations Technologies, Dynafed

The Dynamic Federations system, Dynafed[16] provides a fast dynamic name space that it
exposes via HTTP and WebDAV. This is built on-the-fly by merging and caching (in memory) meta
data items taken from a number of (remote) endpoints. Dynafed is developed to be performant,
scalable and resilient to endpoints that become unavailable. HTTP and WebDAV clients can browse
the Dynamic Federation as if it were a unique partially cached name space. It will redirect clients to
the best available host when they ask for a file replica. Dynafed also supports writing. Distributed
data are presented as a unified repository. Dynafed natively supports HTTP, WebDAV, S3[27]
and MS Azure[28] endpoints. The preferred data management choice for Dynafed is to work
with algorithmic, prefix-based file path translations across sites. This gives the best flexibility to
the data management model, together with very quick user interaction and high performance. If
needed, Dynafed can also contact an external service of file name/path translation.

3.3 The storage backends: dCache, EOS and StoRM

dCache[11] is a Data Storage and Management system developed by dCache.org (DESY, Fer-
milab, NDGF). dCache is in production at more than 60 sites around the world, including 8 WLCG
Tier 1 centers and for over a decade it is managing more than 150 PBytes in total. Some installations
are spanning cities and even countries. dCache already provides basic mechanisms for QoS, data
orchestration and remote caching. EOS[13] : Data Storage and Management system developed by
the CERN IT Department, scalable to many tens of petabytes and supporting geographically dis-
tributed deployment. EOS is managing the data of the distributed WLCG Tier 0 center (CERN and
Wigner in Budapest). StoRM[17] : StoRM is a Storage Resource Manager that relies on a parallel
file system or a standard Posix file system backend. StoRM provides an SRM interface to GPFS
and other parallel filesystem technologies, which can be seen as a prerequisite to the XDC QoS in
storage approach.

3.4 INDIGO Orchestrator and TOSCA, the system wide orchestration engine

The INDIGO PaaS Orchestrator[18] is a component of the PaaS layer that allows to instan-
tiate resources on Cloud Management Frameworks (like OpenStack and OpenNebula) and Mesos
clusters. It takes the deployment requests, expressed through templates written in TOSCA YAML
Profile 1.0 [29] and deploys them on the best cloud site available. In order to do that it gathers
SLAs, monitoring info and other data from other platform services, it asks to the cloud provider
ranker for a list of the best cloud sites.

3.5 Rucio, the data management orchestration subsystem

The Rucio project[19] is the new version of ATLAS Distributed Data Management (DDM)[15]
system services, allowing the ATLAS collaboration to manage large volumes of data, both taken

4



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

by the detector as well as generated or derived, in the ATLAS distributed computing system. Rucio
manages accounts, files, datasets and distributed storage systems.

3.6 The INDIGO CDMI reference implementation for QoS

The INDIGO CDMI Reference Implementation[3] is the INDIGO solution to implement CDMI
(SNIA Cloud Data Management Interface) specifications aimed at improving Quality of Service ca-
pabilities of distributed storage resources. This tool will underpin the implemented solution for an
effective policy driven data management system. It provided a flexible plug-in mechanism to call
out to a variety of storage solutions.

4. The envisioned overall architecture

As described in Section 2 the main focus of our work is the extension of the current infrastruc-
ture in three areas. The application of services qualities in storage, smart caching mechanisms and
the overall storage orchestration in terms of location and data transfer and for the implementation
of data life cycle policies. It is clear that those three areas are deeply interlinked and influence each
other in the overall architecture, which is still in discussion within the project. The final version of
the architecture will be published with deliverables XDC-D4.1 and XDC-D1.6[30]. However, in
order to provide at least some insight into our work, we describe those areas independently.

4.1 Quality of Service in storage

The service used to store scientific data is important for scientists responsible for the data
management of their communities: it must satisfies the demands of the scientists, both in terms of
performance and reliability. Research communities often operate on a fixed budget; therefore there
is a natural desire to provide the necessary storage without unnecessary expense. To achieve this,
the scientists and storage providers must have a common understanding of what is required and
what the different storage services can offer.

The idea to provide scientific communities or individuals with the ability to specify a particular
quality of service when storing data, e.g. the maximum access latency or minimum retention policy,
was introduced within the INDIGO-DataCloud[2] [12] project. In INDIGO, QoS in storage was
split into 3 interlinked activities:

• The definition of a common vocabulary within the framework of the Research Data Alliance,
RDA[5] when describing storage qualities

• The rendering of those attributes by a standard network protocol or API

• A reference implementation of the selected standard, covering different storage back ends.

In INDIGO, the network protocol and the implementation was based on an extension of the SNIA
Cloud Data Management Protocol, CDMI[4]. Within XDC, the QoS concept is envisioned to
consistently compliment all data related activities. In other words, whenever storage space is re-
quested, either manually by a user or programmatically by a framework, the quality of that space
can be negotiated between the requesting entity and the storage provider.

5



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

4.1.1 QoS definitions with the Research Data Alliance

Storage providers, such as research institutes and universities acquire storage through some
procurement process. This procurement process may involve buying physical hardware, but in-
creasingly this involves some company provisioning cloud resources tailored to the specific needs.
In either case, the success of this process depends on the storage provider and the company having
a common understanding of what is required.

While this can be achieved through direct meetings and discussions, the process is greatly
simplified if there is a shared, common vocabulary that allows a description of what a storage
service should provide.

In order to achieve a minimum of commonality between the different stakeholders within this
ecosystem, the XDC project is following up on an initiative, started with the INDIGO-DataCloud
project, to define a basic storage quality vocabulary within the framework of the Research Data
Allicance, RDA. XDC is in the process of setting up a working group called "WG Storage Service
Definitions" [6], developing a common vocabulary that allows storage services to be described.
This language will be machine readable and will be sufficient to describe both in-house storage
services in addition to various cloud storage offerings.

4.1.2 The Cloud Data Management Interface, CDMI

To communicate the vocabulary of the different QoS’s defined with RDA over the wire be-
tween clients and storage services, the Cloud Data Management Interface, CDMI[4] has been cho-
sen. Although it only provides very limited functionality to express the storage capabilites and
processes we developed, it is the only known standard in this area and it allows to define exten-
sions to the basic protocol definitions. INIDGO-DataCloud as well as XDC are partnering with the
Storage Network Industry Association, SNIA[10], in charge of guarding the protocols and its ex-
tensions. The extensions suggested by INDIGO-DataCloud and XDC have been accepted and have
been implemented in the SNIA CDMI reference implementation (see next section). However, as
the XDC requirements are even more challenging we envision to continue the process of enhancing
the CDMI extensions according to our needs.

4.1.3 The CDMI Reference Implementation and its plug-ins

To allow organizations implementing the CDMI protocol to test their software stack against a
well defined reference, SNIA is providing a protocol java skeleton in GitHub. With the permission
of SNIA, INDIGO-DataCloud created a second branch of this reference implementation using
the java Sevice Provider Interface, SPI, simplifying the provisioning of plug-ins for a variety of
different storage back ends. Figure 3 sketches the basic idea of that approach. While the common
way of communicating QoS for XDC products will be CDMI, different storage system endpoints
generally provide this functionality through proprietary protocols or API’s. EOS and dCache, for
instance, expose QoS through a RESTful interface. While dCache already offers a QoS plug-in for
the SNIA reference implementation, due to its involvement in INDIGO-DataCloud, EOS will have
to implement one for it’s own interface. Another alternative would be to unify the dCache and EOS
RESTful interfaces and only provide one plug-in for the CDMI reference implementation.

6



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

Figure 3: The SNIA-INDIGO-DataCloud CDMI reference implementation architecture.

As almost all WLCG client applications communicate with storage services through the com-
mon GFAL library, GFAL will be extended to support the CDMI client functionality. As a con-
sequence the File Transfer Service, FTS would automatically be enabled to define QoS for data
transferred to remote storage services. Figure 4 illustrates the relationship between the different
components, from the Orchestration to the final QoS enabled storage services. The architectures
should be seen as a tool box. Not all components need to present, only those needed to achieve the
requested features.

4.2 Data Flow Orchestration

Orchestration of data flows within storage management systems is already available in vari-
ous products, like iRODS[22], Onedata[21], IBM GPFS[23] and others. However, those systems
almost always only interact with data within their systems themselfves. In contrast, the objective
of the XDC Data Flow Orchestration is to interface to a variaty of storage systems and storage
management components, already installed in data intensive e-Infrastructures and to use a well de-
fined language, e.g. TOSCA[29] to configure those data flows. In particular, orchestration of data
in XDC is covering a variety of aspects. They range from enforcing QoS on the global level, as
described in the chapter before, granting access to private data after a well define Grace Period.
Grace Periods are granted by funding agencies to permit keeping scientific data confidential for a
well defined interval, allowing the scientific communities to prepare their findings or finalize their
publications, before the data has to become public. Ideally the XDC orchestration system is sup-
posed to apply the Data Management Plan of a e-Infrastructure or a scientific experiment to the
data generated. To illustrate the potential of this functionality we are presenting a typical use case,
the data preprocessing on data ingestion, as shown in Figure 5.

In this use case, briefly sketched in Figure 5, a user submits a work-flow request to the INDIGO
Orchestrator, instructing it to watch a particular part of an attached storage space. The request
defines that data, newly ingested into the observed storage space should be

• preprocessed by a user-specified application or algorithm and

7



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

Figure 4: Relationship of components composing "Orchestrating Quality of Service" in storage. At the
time of this writing, the component denoted as XDC Message Bus should be regarded as a place holder for
any kind of possible communication between the INDIGO Orchestrator, Rucio and FTS or DynaFed. As
described in figure 6 we might even decide to utilize the Rucio internal bus and expose it to other XDC
components.

• subsequently replicated to other storage spaces.

The preprocessing algorithm could be a data quality check, a data skimming process, metadata ex-
traction, indexing, etc. The replication might just ensure data availability or safety or might be the
preparation for further analysis steps. XDC components involved, are the INDIGO-Orchestrator
and Rucio, performing the orchestration, FTS for performing the data transfers as well as the dif-
ferent storage systems for the distributed storage spaces. Please refer to section "Available Compo-
nents" for details. Figure 5 depicts the steps performed on each ingestion of data into the system.

1. The user submits to the Orchestrator including the following information:

(a) the space to watch for incoming data

(b) the application to be run on incoming data

(c) the replication rule to be enforced on the incoming or preprocessed data.

2. The storage system, holding the watched storage, notifies the presence of new data by send-
ing a message to the XDC message queue.

3. The INDIGO Orchestrator receives the notification and registers the ingested data file into
Rucio, including the replica policy, specified by the user.

8



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

Figure 5: Data preprocessing on data ingest.

4. The Orchestrator selects the best compute site to perform the requested processing. To do so,
it might collect information from different sources: Configuration Management DB, Soft-
ware configuration Lean Agile Management, Monitoring, Storage endpoints.

5. The Orchestrator triggers a data movement through Rucio in order to copy the data to the
selected compute center.

6. The Orchestrator gets notified on the completion of the data transfer, by listening to the XDC
Message Bus.

7. The Orchestrator triggers the processing Job by submitting the request to those computing
clusters available at the site.

8. As soon as the job output is produced, its availability is notified to interested parties, in
particular Rucio, via the XDC message bus.

9. The data, generated by the processing step, is automatically registered into Rucio though the
Orchestrator, using storage events.

10. Rucio takes care that the policies requested for the raw and preprocessed data are applied.

Figure 6 provides a high level overview of the orchestration architecture. Executing the predefined
rules is thus performed by the INDIGO Orchestrator, which is also responsible for handling at-
tached compute resources like cloud or batch systems. However, the orchestrator is delegating all

9



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

storage resource operations to the Rucio framework as it already provides the necessary function-
ality and interfaces to data transfer, federation and storage endpoints.

Figure 6: Components and communication for event driven orchestration of data and compute resources.
See caption of figure 4 for details on the XDC respectively Rucio message bus.

4.3 Advanced Caching

Highly distributed data infrastructures require additional precautionary measures to overcome
the limitations of wide area connections, as there are data link failures and congestions or the in-
evitable message latencies. Traditionally those issues are overcome by introducing data caching
layers close to the data sinks. Those caches can either be filled by the orchestration engine in
advance or automatically on request. The Advanced orchestration is already covered in the ’Or-
chestration’ chapter 4.2. Consequently, this section focuses on the local caching on demand func-
tionality. Although there is a variety of possible ways to cache data, we will concentrate on three
cases:

• Data-Only cache nodes

• Name Space Enabled cache nodes

• Managed cache nodes

4.3.1 Data-Only cache nodes

The Data-Only cache approach is illustrated in figure7. Within an area logically close to the central
storage system, clients are served by that system directly. Although logically close in general refers

10



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

to the network latency of the connection, the concept can be generalizing and can be interpreted
as everything which gives logically close an advantage over far, e.g. the network bandwidth or the
price of the connection. Areas outside of logically close are served by Data-Only nodes. Those
nodes are only storing the data, while all name space operations are still performed by the central
system. When the location manager of the central system determines that a client exceeds a certain
distance as defined above, it transfers the data to the closest location, seen from the client, and
instructs the client to redirect the request to that node, as depicted in figure 8. Naturally, the central
system needs to keep track of the contents of all remote nodes, so that a second request for already
transferred data from a similar location can be redirected right away. There are some issues to
consider when implementing this approach:

• This system only provides mechanisms to overcome wide area latencies. A wide area net-
work breakdown will cause all remote nodes not to function any more, as each file request is
directed to the central system first.

• In case of a failure of the remote Data-Only cache node, the central system must be informed
via a back channel, to avoid permanent failures of clients close to that node.

• Some advantages of distributed systems are not taken advantage of in this scenario, as

– the central name space database is growing with the number of remote Data-Only cache
nodes and its file content

– the central system has to handle all name space operations even for those files which
are already close the requesting clients.

• As there is always communication ongoing between the client and the central system, the
latency problem will still accur for each file, an effect which may become dominant, partic-
ularly for small files.

However the advantage is an expected low maintenance cost of the Data-Only cache nodes. There-
fore the deployment of Data-Only cache nodes is preferably envisioned at sites focusing on provid-
ing compute resources instead of data storage.

4.3.2 Name Space Enabled cache nodes

To overcome most of the issues of the Data-Only cache system we are investigating Name
Space Enabled cache nodes, using a Squid-like approach. In this cache the initial request for a file
is always directed to the local cache node first. In case of a cache miss, the local system would
take care of fetching the requested data from the closest remote location before it delivers the data
to the client. With this approach, not only the data access latency would be minimized but also the
latency of name space operations. Moreover, the system would be agnostic to wide area failures
for data already present locally. Here as well some issues need further consideration:

• The client needs to know the address of the local endpoint. Although this should not an issue,
a failure of the cache for that area is difficult to reconfigure, unless dynamic DNS entries are
used.

11



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

Figure 7: An infrastructure based on data-only caching nodes. The red arrows are representing the data
flow. The bigger arrow indicates that the network bandwidth between the master system and the data-only
caches likely is higher than to the end users.

Figure 8: Request flow for a data-only caching node. The blue arrows are indicating the data movement
between the various components.

4.3.3 Managed cache nodes

With the above two cache approaches, the assumption is that the caching site is not interested or
not capable of hosting managed storage. This is not necessarily true for sites already running large
storage installations. Nevertheless, even those sites might want to enable transient storage of data
without the need to install a new software stack that supports acting as caching storage for a remote
system. Therefore we are investigating a more complex cache scenario where the name space entry
and possibly the access control information is transferred together with the data to the system closer
to the client that is requesting the data. Figure 9 depicts such an infrastructure. It is essentially
composed of two central systems, virtually connected via a control channel to communicate meta

12



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

Figure 9: An infrastructure based on managed caching nodes.

Figure 10: Request flow for managed caching nodes.

data information that is accompanying the actual data transfers. Figure 10 illustrates the process in
more detail. Client B is requesting data from system B. As this data is currently only available at
system A, B is fetching the data from A, including primary meta-data information like the name
entry and the access control information. This name entry is added to the name space of system B.
Within B, the data is declared cached and will be removed according to the cache cleaning policies
of B. There is no need to inform system A in case the file is removed from the cache-part of B. The
data is just re-fetched if needed. There are additional options possible for this scenario which we

13



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

didn’t further investigate yet but might become important:

• A cached copy of a file in system B could be declared ’permanent’ and would then appear in
the permanent part of the name space.

• The Managed cache nodes approach allows to stack more than one system. At the end of the
chain there could be a Name Space Enabled cache node or a Data-Only cache node.

• Cache System B could be connected to more than one upstream node. Theoretically, the
approach would allow for a meshed setup.

5. Summary and outlook

The high-level objective of this work is the automated placement of scientific data in the Ex-
abyte region on the site (IaaS) as well as on the federated storage level, including the realization of
necessary cache layers and the negotiation of required versus available Quality of Service classes
in storage. We are working in three strongly interlinked tasks to achieve these goals. These are
the implementation of Quality of Service in available storage systems, the advanced caching to
overcome known problems of highly distributed systems, and the orchestration of data to cope
with experiment work flows or predefined data life cycle policies. As the project just started we
are still working on finalizing parts of the overall architecture which will be published as part of
the XDC deliverable D1.6[30] before November 2018. Besides the technical goals, the intention
is to be able to improve the existing infrastructure provided by WLCG, EGI or EUDAT without
significant changes in the deployed software stacks, as intrusive changes would not be accepted by
those infrastructures, based on their risk assessment or imposed costs.

References

[1] XDC Grant Agreement: 777367 eXtreme DataCloud H2020 EINFRA 2017,
https://ec.europa.eu/research/participants/portal ; Project ID =777367; Program ID=31045243

[2] INDIGO-DataCloud Grant Agreement: 653549 H2020 EINFRA 2017,
https://ec.europa.eu/research/participants/portal ; Project ID =653549; Program ID=31045243

[3] https://github.com/SNIA/CDMI/tree/indigo-dc

[4] ISO/IEC 17826:2016 Information Technology Cloud Data Managment Interface, CDMI

[5] Research Data Alliance https://www.rd-alliance.org

[6] https://rd-alliance.org/group/qos-datalc-definitions-wg/case-statement/qos-datalc-definitions-wg-
case-statement

[7] Square Kilometer array https://www.skatelescope.org/

[8] World Wide LHC Computing Grid http://wlcg.web.cern.ch/

[9] European X-FEL www.xfel.eu

[10] The Storage Networking Industry Association https://www.snia.org/

14



P
o
S
(
I
S
G
C
 
2
0
1
8
 
&
 
F
C
D
D
)
0
0
1

Smart Data Management Patrick Fuhrmann

[11] AP Millar, T Baranova, G Behrmann, C Bernardt, P Fuhrmann, DO Litvintsev, T Mkrtchyan, A
Petersen, A Rossi, A and K Schwank, Cache, agile adoption of storage technology, IOP Publishing,
Journal of Physics: Conference Series 2012, 3966,3,32077–32087

[12] P Fuhrmann et al. Storage quality-of-service in cloud based scientifc environments: a standardization
approach, October 2017Journal of Physics Conference Series 898(6):062043

[13] AJ Peters et al. EOS Development, October 2017 Journal of Physics Conference Series
898(6):062032,DOI10.1088/1742-6596/898/6/062032

[14] A. Kiryanov, M Salichos, AA AyllÃşn and O Keeble FTS3 - A File Transfer Service for Grids, HPCs
and Clouds, Conference: International Symposium on Grids and Clouds 2015,
DOI10.22323/1.239.0028

[15] V. Garonne, G A Stewart, M Lassnig, A Molfetas, M Barisits, T Beermann, A Nairz, L Goossens, F B
Megino and C Serfon The ATLAS Distributed Data Management project: Past and Future, Journal of
Physics: Conference Series, Volume 396, Part 3

[16] The Dynamic Federation project http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project

[17] StoRM Web Site https://italiangrid.github.io/storm/

[18] The INDIGO DataCloud PaaS Orchestrator https://www.indigo-datacloud.eu/paas-orchestrator

[19] Scientific Data Management, Rucio https://rucio.cern.ch/

[20] The European Open Science Cloud.
https://www.egi.eu/about/newsletters/what-is-the-european-open-science-cloud

[21] The Onedata distributed storage technology. https://onedata.org/

[22] The Integrated Rule-Oriented Data System, iRODS. https://irods.org/

[23] The IBM General Parallel Filesystem, GPFS,
https://searchstorage.techtarget.com/definition/IBM-General-Parallel-File-System-IBM-GPFS

[24] The Cherenkov Telescope Array. https://www.cta-observatory.org/

[25] The Large Hadron Collider. https://home.cern/topics/large-hadron-collider

[26] The LifeWatch ERIC. https://www.lifewatch.eu/

[27] The Amazon S3 Storage Service. https://aws.amazon.com/s3/

[28] The Microsoft Azur Storage Service.https://azure.microsoft.com/en-us/

[29] The TOSCA Simple Profile in YAML Version 1.0 http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

[30] eXtreme-DataCloud deliverable D1.6 (General Architecture) and D4.1 (WP4 Architecture) (will be
published at http://www.extreme-datacloud.eu/deliverables/ )

15


