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One Higgs was found. Are there more? In this work we discuss simple extension of the scalar sec-
tor of the Standard Model (SM) used as benchmark models by ATLAS and CMS in the searches
for new scalars at the LHC. We discuss how much the discovered 125 GeV Higgs at the LHC
resembles the SM Higgs and how will our understanding of the Higgs nature improve at future
electron-positron colliders. Models with extended Higgs sectors provide very interesting scenar-
ios, from the existence of charged Higgs bosons to CP-violating scalars that can be probed by the
experimental collaborations at the LHC. Comparison between the rates in the different models
show that in some cases the models could be distinguished.
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Extended Higgs Sectors at the LHC Rui Santos

1. Introduction

After the discovery of the Higgs boson, the search for new scalars by the experimental groups
at CERN, further motivated the study of extensions of the Standard Model (SM). Besides super-
symmetric models, the simplest extensions of the scalar sector of the SM provide an excellent
framework for the interpretation of many searches and to motivate new searches. In this work we
discuss a few extensions of the scalar sector of the SM. We will discuss how efficiently can the
parameter space of these simple extensions be constrained through the measurements of the Higgs
couplings and how SM-like is the SM-like Higgs boson. We furthermore try to understand if these
models can be distinguished if a new scalar is found. All models have a limit where the 125 GeV
Higgs looks exactly like the SM at tree level and if all other particles are very heavy it will be hard
to probe their existence. At this stage it is not clear if electroweak radiative corrections play an
important role in the model’s phenomenology. In fact, although the corrections may change sig-
nificantly the tree-level couplings of the 125 GeV Higgs, there are large regions of the parameter
space of the models where they are small enough to be inside the predicted error for the future LHC
Higgs couplings measurements.
If the future measurements of the 125 GeV Higgs couplings are compatible with the SM predic-
tions with ever increasing precision, the models will approach more and more their SM-like limit,
where they are all very similar as we will show. Only if a new scalar is found can we start probing
the different possibilities for the new models. If this is the case, some models show very inter-
esting properties, some of which are very characteristic of specific models. We will discuss some
particularly interesting scenarios of selected models.

2. Building the models

When building extensions of the SM there are some very general features which make the models
comply with experimental results in a simpler way. However, if it is true that all models need to
provide a 125 GeV Higgs that is not a pure CP-odd scalar, any other constraints should only be
seen as a guide to build the simpler extensions compatible with the experimental results. Among
the most relevant are:

• The ρ parameter, which is measured with great precision, can be written as a function of the
SU(2)L Isospin Ti, the Hypercharge Y , and the vacuum expectation value of the fields vi, as

ρ =
m2

W

m2
W cos2 θW

=
∑i[4Ti(Ti +1)−Y 2

i ] |vi|2 ci

∑i 2Y 2
i |vi|2

(2.1)

where ci = 1(1/2) for complex (real) representations. The simplest representation with ρ = 1
is the singlet. The next one is the doublet and after that comes the septet. Hence, extended
models with an arbitrary number of singlets and doublets have ρ = 1 at tree-level. Extensions
with any other representations will need some kind of fine-tuning to comply with ρ = 1 at
tree-level.

• Tree-level flavour changing neutral currents (FCNC) are experimentally very constrained.
Models with more than one doublet can give rise to tree-level FCNC. This problem is usually
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fixed with the introduction of ad-hoc discrete symmetries imposed both on the scalar and on
the fermion fields.

2.1 SM + singlet (RxSM and CxSM)

We now present a few of the simplest models that obey all the conditions above. The simplest
extension of the scalar potential of the SM is the addition of either a real (RxSM) or a complex
(CxSM) singlet. The complex field S= S+ iA has zero isospin and zero hypercharge and therefore
only enters the model via mixing with the scalar field from the SM doublet. The CxSM version of
the potential is invariant under a global U(1) symmetry, softly broken by linear and quartic terms,

V =
m2

2
H†H +

λ

4
(H†H)2 +

δ2

2
H†H|S|2 + b2

2
|S|2 + d2

4
|S|4 +

(
b1

4
S2 +a1S+ c.c.

)
, (2.2)

with the fields defined as

H =

 G+

1√
2
(v+h+ iG0)

 and S=
1√
2
[vS + s+ i(vA +a)] , (2.3)

where v ≈ 246 GeV is the vacuum expectation value (VEV) of the h field and vS and vA are the
VEVs of the real and imaginary parts of the complex singlet field, respectively. Imposing invariance
under S→ S∗ (or A→−A), implies that a1 and b1 are real.
The vacuum structure determines the number of stable particles (see discussion in [1]). In the bro-
ken phase, where all 3 VEVs are non-zero and the three CP-even scalars mix, the mass eigenstates
Hi are obtained via the rotation matrix R, which we parametrize as

R =

 c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3− s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

 , (2.4)

where we have defined si ≡ sinαi and ci ≡ cosαi, with the angles varying in the range −π/2 ≤
αi < π/2 and the masses of the neutral Higgs ordered as mH1 ≤ mH2 ≤ mH3 . A detailed account of
the models can be found in [1].

2.2 SM + doublet (2HDM and C2HDM)

The potential for the real (2HDM) and complex (C2HDM [2]) versions of the 2-Higgs-Doublet
model, is chosen to be invariant under the Z2 transformations Φ1→Φ1 and Φ2→−Φ2,

V = m2
11|Φ1|2 +m2

22|Φ2|2−m2
12(Φ

†
1Φ2 +h.c.)+

λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2)+λ4(Φ

†
1Φ2)(Φ

†
2Φ1)+

λ5

2
[(Φ†

1Φ2)
2 +h.c.] . (2.5)

The 2HDM is defined with all parameters and VEVs real, while the C2HDM is built with real
VEVs, but m2

12 and λ5 complex. The particle spectrum of the 2HDM include two CP-even scalars,
one CP-odd scalar and two charged Higgs. The C2HDM has two charged scalars and three neutral
scalar bosons with no definite CP Hi (i = 1,2,3), ordered by ascending mass according to mH1 ≤

2
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mH2 ≤ mH3 . In the C2HDM the neutral mass eigenstates are obtained via the rotation of a matrix
we again parametrise as R in ( Eq. (2.4)), with the same allowed range for the mixing angles. The
2HDM has 8 independent parameters while the C2HDM has 9 free parameters. For both models

we define the common parameters v=
√

v2
1 + v2

2≈ 246 GeV and tanβ = v2/v1. The remaining free

parameters for the 2HDM are α, mh, mH , mA, mH± andm2
12 , where α is the rotation angle in the CP-

even sector. For the C2HDM the remaining free parameters are α1,2,3, mHi , mH j , mH± andRe(m2
12).

The third neutral Higgs mass is obtained from the other parameters [3]. The 2HDM and C2HDM
discussed in this work have no tree-level FCNCs due to the global Z2 symmetry imposed on the
scalar doublets which is extended to the fermions leading to the four independent Yukawa versions
of the model: Type I, Type II, Flipped and Lepton Specific. All couplings for the C2HDM can be
found in [4].

2.3 SM + doublet + singlet (N2HDM)

The potential chosen for the N2HDM [5] is invariant under the Z2 symmetries

Φ1→Φ1 , Φ2→−Φ2 , ΦS→ΦS (2.6)

which is softly broken by the m2
12 term and

Φ1→Φ1 , Φ2→Φ2 , ΦS→−ΦS (2.7)

broken spontaneously by the singlet VEV. We write the potential as

V = m2
11|Φ1|2 +m2

22|Φ2|2−m2
12(Φ

†
1Φ2 +h.c.)+

λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2)+λ4(Φ

†
1Φ2)(Φ

†
2Φ1)+

λ5

2
[(Φ†

1Φ2)
2 +h.c.]

+
1
2

m2
SΦ

2
S +

λ6

8
Φ

4
S +

λ7

2
(Φ†

1Φ1)Φ
2
S +

λ8

2
(Φ†

2Φ2)Φ
2
S . (2.8)

This model is CP-conserving and has no dark matter candidate. The particle spectrum includes two
charged Higgs, one CP-odd boson and three CP-even scalars which again we denote by Hi. One of
the CP-even scalars is chosen to be the 125 GeV Higgs. The rotation from the gauge eigenstates
to the mass eigenstates in the CP-even sector is again given by R with the angles αi varying in the
same range as before. The model has 12 independent parameters: v, tanβ , α1,2,3, mH1,2,3 ,mA, mH±

and m2
12. Extending the Z2 symmetry to the Yukawa sector we end up with the same four types of

Yukawa models. A detailed study of the N2HDM was performed in [5].

3. The 125 GeV Higgs

3.1 Higgs couplings to gauge bosons

The values of the tree-level 125 GeV Higgs couplings to gauge bosons are all smaller (in all the
models discussed) than the corresponding SM coupling. This is a consequence of unitarity - the
sum of the squared couplings ghiVV , where V = W,Z and Hi denotes one of the CP-even Higgs
boson, has to be equal to the corresponding SM coupling gSM

hVV . Taking the lightest Higgs in the
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model to be the 125 GeV one (and just call it h), to make the discussion easy, the couplings to
gauge bosons in the RxSM and in the 2HDM are modified relative to the SM as

gRxSM
hVV = cos(α1)gSM

hVV ; g2HDM
hVV = sin(β −α)gSM

hVV , (3.1)

while for the CxSM, C2HDM and N2HDM the couplings are modified relative to the RxSM and
to the 2HDM, respectively, as

gCxSM
hVV = cos(α2)gRxSM

hVV ; gN2HDM
hVV = cos(α2)g2HDM

hVV ; gC2HDM
hVV = cos(α2)g2HDM

hVV . (3.2)

However, the angle α2 has very different meanings in these models, that is, it measures different
contributions to the 125 GeV Higgs: the imaginary component of the singlet in the CxSM, the
singlet component in the N2HDM and the CP-odd component in the C2HDM.

3.2 Higgs couplings to fermions

In the case of the singlet extensions, the 125 GeV Higgs Yukawa couplings are modified relative
to SM by the the same factor that modified the Higgs to gauge boson couplings: cos(α1) for the
RxSM and cos(α1)cos(α2) for the CxSM,

Y RxSM
h f f = cos(α1)Y SM

h f f ; YCxSM
h f f = cos(α2)Y RxSM

h f f , (3.3)

while for the N2HDM and for the C2HDM the couplings are modified relative to the 2HDM,
respectively, as

Y N2HDM
h f f = cos(α2)Y 2HDM

h f f ; Re(YC2HDM
h f f ) = cos(α2)Y 2HDM

h f f . (3.4)

That is, they are modified exactly like for the gauge bosons, except for the C2HDM for which there
is an imaginary component of the Yukawa coupling that may have one of the following forms

Im(YC2HDM
h f f ) =±i

sin(α2)

tanβ
Y SM

h f f ; Im(YC2HDM
h f f ) =±i sin(α2) tanβ Y SM

h f f . (3.5)

depending on the model type (see [4, 6] for details). As discussed in [6], even if the angle that
measures the amount of CP-violation α2 is small, the pseudoscalar component can still be large if
tanβ is large.

3.3 Bounds on the h125 components

Model CxSM C2HDM II C2HDM I N2HDM II N2HDM I NMSSM

(ΣorΨ)allowed 11% 10% 20% 55% 25% 41%

Table 1: Allowed singlet and pseudoscalar (for the C2HDM) admixtures after the LHC Run 1.

In the models discussed in this work, the 125 GeV Higgs can be a combination from the two dou-
blets like in 2HDM it can have a CP-even and a CP-odd admixture as in the C2HDM or it can
have a singlet admixture as in the singlet extension and in the N2HDM. Using the ATLAS and
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CMS combined measurements [7] of the Higgs couplings after the LHC Run 1, we can derive the
maximum allowed admixtures [8] which are shown in table 1 , where Σ (Ψ) stands for the singlet
(pseudoscalar) admixture of the 125 GeV Higgs. Results are shown for a few selected models in-
cluding the Next-to-Minimal Supersymmetric Standard Model (NMSSM). It is clear from the table
that substantial admixtures are still allowed after Run 1. However, in a future electron-positron
collider such as CLIC, the precise measurements of the couplings will reduce the admixtures well
bellow the percent level. Using the CLIC predictions for the measurements of the Higgs cou-
plings [9, 10] we found that [11] the bounds on the admixtures are completely dominated by the
measurement of κHZZ for

√
s = 350 GeV and a luminosity of 500 fb−1 and by κHWW for

√
s = 3

TeV and a luminosity of + 2.0 ab−1, where κ2
Hii = ΓBSM

Hii /ΓSM
Hii. With very precise measurements of

κZZ,WW and because the unitary relation [11]

κ
2
ZZ,WW +Ψ+Σ≤ 1 . (3.6)

holds in all models and is independent of the Yukawa type, the bounds on the admixtures (assuming
that the central values are the SM predictions), will be roughly the same for all models and are given
by [11]

•
√

s = 350 GeV and a luminosity of 500 fb−1: Σ,Ψ < 0.85% from κHZZ

•
√

s = 3 TeV and a luminosity of + 2.0 ab−1: Σ,Ψ < 0.30% from κHWW .

4. Non-SM like scenarios

There are many phenomenologically interesting scenarios for the extended Higgs models. New
scalars are predicted and particularly charged Higgs bosons which would definitely signal new
physics beyond the SM. The most interesting signals which would change our view of the scalar
sector are given by the C2HDM. In fact, as discussed in [12, 13], if a new Higgs is found with
substantial decays to H2→ h125Z and H2→ ZZ when combined with the already observed h125→
ZZ it would strongly hint a CP-violating scalar sector. However, only a detailed investigation of
the model could confirm the CP-nature of the new sector because decays of the type A→ ZZ are
induced at one-loop in CP-conserving scalar sectors.
CP-violating sectors also allow for peculiar situations such as the one described in figure 1 . We
present the allowed points for the Type II C2HDM for H2 = 125 GeV. In the left panel points that
are pure pseudoscalar are still allowed (in b and τ couplings) while in the right panel we see that
only points with a very small pseudoscalar component are allowed. Therefore, if direct detection
concludes that the Higgs is mostly a scalar in the ttH coupling but it is mostly a pseudoscalar in the
ττH coupling, this can be a sign of CP-violation.
Finally we note that a decay of a scalar into two other scalars of different masses is sometimes one
of the best search channels [14] for the models where these decays are allowed. This is not possible
in the 2HDM but it is possible for all other models presented in this work. Experimental searches
for these type of decays are therefore important for the next LHC Run. All points comply with the
most relevant theoretical bounds and the most up-to-date experimental results.

5
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Figure 1: Allowed points in the Type II C2HDM for the case when H2 is the 125 GeV Higgs. We show the points in
the plane odd versus even Yukawa couplings. Left: b and τ couplings; right: t couplings. The Lagrangian is written as
proportional to ψ̄ f [ce(Hi f f )+ ico(Hi f f )γ5]ψ f Hi.

5. Comparing models

If a new scalar is found we need to understand if its properties point to a particular model or if there
are models where it is excluded. We have compared several models in recent papers to find that
event rates are sometimes enough to choose particular models in given regions of their parameter
space. Furthermore, even the different Yukawa versions of a specific model can sometimes be
distinguished. In figure 2 we show the total rates for the production (in gg+bb) of a h125 Higgs
decaying into two lighter scalars of the same mass. In the left panel we show the results for Type I
and Type II and in the right panel we show results for the Lepton Specific and Flipped models. We
use the notation H↓ to identify the lightest scalar (non-125) in the model. Clearly, all versions of
the C2HDM can be probed at the next LHC run. Also, if the cross sections are above 1 pb some of
Yukawa versions are favoured [4], Type II on the left and the flipped model on the right.

Figure 2: Total rates for the production of a h125 Higgs decaying into two lighter scalars of the same mass. Left: Type I
and Type II; right: Lepton Specific and Flipped.
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6. Conclusions

In this work we have presented and discussed some simple extension of the scalar sector of the
SM. We have shown how the 125 Higgs can deviate from the doublet like structure by looking at
the admixture with the singlet component and in the case of the C2HDM the admixture with the
CP-odd component. We concluded that until the end of the LHC the bounds will be quite different
in the models presented and will be of the order of tens of percent. At a future electron-positron
collider such as CLIC the bounds on the admixtures become very strong (below 1%) and all models
have roughly the same bounds due to unitarity. In such a scenario, new physics can only be seen
through the discovery of a new scalar.
Some of the extension presented provide very interesting signals of new physics. Not only charged
Higgs boson are predicted in most models but the C2HDM is particularly interesting if certain
combinations of three decays are seen or if the CP-nature of the scalars can be studied in different
channels in direct searches.
There has been an effort to calculate electroweak radiative corrections to Higgs decays in these
models and in particular for the singlet extension [15–17] for the 2HDM [18, 19] and for the
N2HDM [20]. Taking into account the uncertainties in those corrections and the very broad al-
lowed parameter space in the models, no relevant conclusions can be drawn except perhaps if a
new particle is found.
Several codes based on HDECAY [21,22] for each of the models presented are available for the cal-
culation of all Higgs branching ratios, including the state-of-the art higher order QCD corrections
and possible off-shell decays:

• Singlet extension, both for the RxSM and for the CxSM in their symmetric and broken
phases [14], named sHDECAY 1.

• 2HDM [23] as part of the HDECAY release and C2HDM [4] named C2HDM_HDECAY 2.

• N2HDM named N2HDECAY3 [5, 24] which implements the N2HDM in several phases.

Figure 3: The right to party.

Finally, it can happen that the LHC will not show any signs
of new physics in the next years. In that case, particle physicists
can spend their time having fun building new models and explor-
ing them. It could be that one of these models will finally answer
the outstanding problems in particle physics and that it will pre-
dict signatures that were not searched for so far at the LHC. It is
the right of a theorist to party! (see figure 3. 4)

1The program sHDECAY can be downloaded from the url: http://www.itp.kit.edu/~maggie/

sHDECAY.
2The program C2HDM_HDECAY can be downloaded from the url: https://www.itp.kit.edu/~maggie/

C2HDM.
3The program N2HDECAY is available at: https://gitlab.com/jonaswittbrodt/N2HDECAY.
4Figure from wikipedia.
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