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1. The Origin of Dark Matter and Motivation for Indirect Searches

Over the past several decades, weakly interacting massive particles (WIMPs) have generally
been considered the leading class of candidates for the dark matter of our universe [1]. With the goal
of identifying the particle nature of this substance, experiments have been designed and carried out
to detect the interactions of dark matter particles with atoms (direct detection), to produce particles
of dark matter in collider environments, and to detect the products of dark matter annihilations or
decays (indirect detection).

Indirect searches for dark matter include efforts to detect the gamma rays, antiprotons, positrons,
neutrinos, and other particles that are produced in the annihilations or decays of this substance.
Across a wide range of models, the abundance of dark matter that emerged from the early universe
is set by the dark matter’s self-annihilation cross section. As I will demonstrate below, a stable
particle species with a thermally averaged annihilation cross section of 〈σv〉 ' 2.2×10−26 cm3/s
is predicted to freeze out of thermal equilibrium with an abundance equal to the measured cos-
mological density of dark matter [2, 3, 4]. In many simple models, the dark matter is predicted
to annihilate with a similar cross section in the modern universe, providing us with an important
benchmark and motivation for indirect searches. Within this context, the current era is an exciting
one for indirect detection. In particular, gamma ray and cosmic ray searches for dark matter anni-
hilation products have recently become sensitive to dark matter with this benchmark cross section
for masses up to around the weak scale, O(102 GeV).

1.1 The Abundance of a Thermal Relic

Consider a stable particle, X , that can annihilate in pairs. Although I intend to identify this state
with the dark matter of our universe, this calculation is quite general and applies to a wide range of
stable particle species. The evolution of the number density of this species, nX , is described by the
following equation:

dnX

dt
+3HnX =−〈σv〉[n2

X − (nEq
X )2], (1.1)

where H is the rate of Hubble expansion, 〈σv〉 is the thermally averaged value of the annihilation
cross section multiplied by the relative velocity of the two particles, and nEq

X is the equilibrium num-
ber density (i.e. the number density that would be predicted if the X population were in chemical
equilibrium with the thermal bath). The Hubble rate is given by

H =

(
8πρ

3m2
Pl

)1/2

=

(
8π

3m2
Pl

π2g?T 4

30

)1/2

, (1.2)

where ρ is the total energy density and mPl≈ 1.22×1019 GeV is the Planck mass. In the second line
of this equation, we have related the energy density to the temperature of the bath, ρ = π2g?T 4/30,
where g? counts the number of effectively massless degrees-of-freedom:

g? ≡ ∑
i=bosons

gi

(
Ti

T

)4

+
7
8 ∑

i=fermions
gi

(
Ti

T

)4

. (1.3)
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Figure 1: The freeze-out of a thermal relic. The solid line denotes the equilibrium number density, as
a function of the mass of the particle divided by the temperature of the bath. The dashed lines show the
number density after the relic has fallen out of equilibrium. The greater the annihilation cross section of the
relic, 〈σv〉, the smaller will be the relic abundance that survives the Big Bang.

Here gi is the number of internal degrees-of-freedom of state i. Among the particle content of the
Standard Model, g? varies from 106.75 at temperatures well above 100 GeV, to 10.75 at tempera-
tures between 1 and 100 MeV, and to 3.36 at temperatures below the electron mass.

At high-temperatures (T � mX ), the number density of a particle species X that is in equilib-
rium is given by

nEq
X = (ζ (3)/π

2)gX T 3 (Bose) (1.4)

nEq
X = (3/4)(ζ (3)/π

2)gX T 3 (Fermi),

where ζ (3)≈ 1.20206 and gX is the number of internal degrees-of-freedom of X . At low-temperatures
(T � mX ), the equilibrium number density is instead given by

nEq
X = gX

(
mX T
2π

)3/2

e−mX/T . (1.5)

In each of these expressions for nEq
X , we have assumed that there is no appreciable chemical poten-

tial, such as that which might arise from a primordial asymmetry between dark matter and anti-dark
matter, for example.

Unless the interactions of X with the Standard Model are extremely feeble (a case I will con-
sider later), the X population will be in chemical and kinetic equilibrium with the thermal bath
in the early universe. As the temperature drops below mX , however, the X abundance becomes
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exponentially suppressed (see Eq. 1.5) until the rate of Hubble expansion exceeds that of annihi-
lation. At that point in time, the X population freezes out of equilibrium, by which I mean that
its co-moving number density (nX a3, where a is the scale factor) stops appreciably changing. The
Hubble rate, H, exceeds that of the annihilation rate, nX〈σv〉, when the temperature drops to TF,
given as follows:

mX

TF
≈ 23+ ln

[(
σv

2.2×10−26 cm3/s

)(
80
g?

)1/2(gX

2

)(
mX/TF

23

)3/2( TF

10GeV

)]
. (1.6)

In other words, the X population freezes out when the temperature of the universe drops to a value
∼ 20 times smaller than mX . Although TF is a function of the particle’s annihilation cross section
and number of internal degrees-of-freedom, the dependence on these quantities is only logarithmic,
and mX/TF ∼ 10−30 across a wide range of values.

After freeze-out, the total number of X particles is approximately conserved, and the value of
nX simply scales as a−3 due to the expansion of the universe. The density of the X population today
is thus given by:

ρ
today
X = mX ntoday

X

≈ mX nEq
X (TF)a3

F, (1.7)

where aF is the scale factor at freeze-out. Numerically, this results in the following abundance:

ΩX h2 ≈ 0.12
(

2.2×10−26 cm3/s
〈σv〉

)(
80
g?

)1/2(mX/TF

23

)
, (1.8)

where ΩX ≡ ρX/ρcrit is the density in terms of the critical density and h is the current Hubble
constant in units of 100 km/s/Mpc. For reference, cosmological measurements (including those of
the cosmic microwave background) indicate that the average density of cold dark matter is near the
benchmark value used in this expression, ΩDMh2 ≈ 0.11933±0.00091 [5].

Note that we have assumed in this calculation that X freezes out of equilibrium at a temperature
well below its mass, making X a cold thermal relic. If the relic is very light or feebly coupled, this
may not be the case. For a particle species that freezes out when relativistic, one would repeat this
calculation using Eq. 1.5 to determine the abundance at freeze-out, an arriving at a very different
result. Standard Model neutrinos are a well known example of a hot relic, for which this calculation
yields Ων+ν̄h2 ≈ 0.0011(mν/0.1eV). Given that the observed large scale structure of our universe
rules out the possibility that any sizable fraction of the dark matter is hot, however, I will focus
here on the case of dark matter in the form of a cold thermal relic.

1.2 General Considerations Regarding the Origin of Dark Matter

In the calculation presented above, we made a number of assumptions regarding the nature of
the dark matter and its origin. In particular, we assumed that:

1. X is stable, or at least cosmologically long-lived.

2. X interacts with the Standard Model strongly enough to reach equilibrium at some point in
the early universe.
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3. There are no other mechanisms that contribution to the production of X particles after freeze-
out.

4. The early universe was radiation dominated, and space expanded at the rate predicted by
general relativity.

Any of these conditions could plausibly be violated, of course. If the first of these conditions
is not the case, however, then X cannot be the dark matter, since the density of dark matter in
the universe today has been measured to be similar to its abundance during the formation of the
cosmic microwave background (CMB) [6, 7]. To satisfy the second condition listed above, the
rate for interactions between the dark matter and the Standard Model must exceed that of Hubble
expansion, nEq

X σv >∼ H. For interactions in the form of X annihilations, for example, this condition
can be written as follows (for T � mX):

nEq
X σv >∼ H (1.9)

aζ (3)gX T 3

π2 σv >∼
(

8π

3m2
Pl

π2g?T 4

30

)1/2

,

where a = 1 (3/4) for the case in which X is a boson (fermion). This reduces to the following
condition to reach equilibrium:

σv >∼ 10−39 cm3/s ×
(

TeV
T

)(
100
g?

)1/2

. (1.10)

This is a very small cross section, many orders of magnitude smaller that that required to generate
an acceptable thermal relic abundance. This ensures that any particle species with anything but
the feeblest of interactions with the Standard Model will be easily maintained at equilibrium in the
early universe (until freeze-out occurs).

A stable particle species which does not interact enough to reach equilibrium with the ther-
mal bath of Standard Model particles could be produced through a variety of mechanisms. Such
possibilities include the process of thermal freeze-in (in which the X particles are produced though
the interactions of Standard Model particles, without the X abundance ever reaching equilibrium),
production through out-of-equilibrium decays [8, 9, 10, 11, 12], misalignment production (such as
in the case of the QCD axion), or through the oscillations of Standard Model neutrinos into a cos-
mologically long-lived sterile neutrino [13, 14, 11]. We also note that if the expansion history of the
early universe were substantively different from that predicted in the standard radiation-dominated
picture, the abundance of dark matter that emerges from the Big Bang could be altered in important
ways. Examples include scenarios with an early matter dominated era [15, 16, 8, 9] or a period of
late-time inflation [17].

Taken together, these considerations force us to the conclusion that the particles that make up
the dark matter must either, 1) interact at a level such that they freeze out of equilibrium to yield the
measured abundance (or less, if the dark matter consists of multiple components), or 2) interact so
little that they never became populated to the equilibrium abundance. Any stable particle species
that interacts at a level in between these two cases will emerge from the early universe with an
abundance that exceeds the measured cosmological dark matter density. This provides us with
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considerable motivation to consider dark matter in the form of a particle that annihilates (or is
otherwise depleted) at a rate equivalent to 〈σv〉 ' 2.2×10−26 cm3/s at the time and temperature of
thermal freeze-out. This cross section thus represents an important benchmark for indirect searches.

Similar arguments can also allow us to place upper and lower limits on the mass of such
a thermal relic. In particular, the cross section that is required to generate the measured dark
matter abundance violates partial wave unitarity unless mX <∼ 120 TeV [18], while the successful
predictions of Big Bang Nucleosynthesis require mX >∼ (1−10) MeV [19]. These two constraints
provide us wth a natural range of masses for the class of dark matter candidates known as weakly
interacting massive particles (WIMPs).

Although dark matter with an annihilation cross section of around 〈σv〉 ' 2.2×10−26 cm3/s
is indeed well-motivated by the above arguments, there are many viable models in which the dark
matter annihilates at a higher or lower rate. In the following subsection, I will summarize some of
the ways in which dark matter might be predicted to annihilate with a larger or smaller cross section
in the universe today than would be expected from the simple thermal relic abundance argument
described above.

1.3 Departures From 〈σv〉 ≈ 2×10−26 cm3/s

1. Velocity Dependent Processes

Depending on the spin of a dark matter candidate and the nature of the interactions that lead to
its annihilations, the resulting cross section may or may not depend on the relative velocity between
the two annihilating particles. Far from any resonances or thresholds, it is often useful to write the
annihilation cross section as a Taylor series expansion in powers of v2:

σv = a+bv2 + cO(v4), (1.11)

where a, b and c are the coefficients of this expansion. s-wave annihilation amplitudes contribute to
all orders of this expansion, whereas p-wave amplitudes only contribute to the v2 and higher order
terms. For this reason, dark matter models which annihilate with a cross section that scales as σv ∝

v2 are often referred to as being “p-wave suppressed”. Since the velocities of dark matter particles
found in halos today are generally around v ∼ 10−3c (compared to v ∼ 0.3c at the temperature of
thermal freeze-out), we expect the current annihilation rate of a p-wave suppressed dark matter
candidate to be suppressed by a factor of roughly ∼ [10−3/0.3]2 ∼ 10−5. As a result, whereas
thermal relics with a velocity-independent (i.e. s-wave) cross section are generally excluded by
current experiments and telescopes for masses up to O(102 GeV), indirect detection experiments
are not generally sensitive to p-wave suppressed dark matter candidates.

For concreteness, consider dark matter that annihilates to a pair of fermions, f f̄ , through an s-
channel Feynman diagram. In Table 1, we summarize the velocity dependance of this annihilation
cross section for a variety of couplings of the mediator to the dark matter and to the final state
fermions (see Ref. [20]). Of the 16 linearly independent combinations of couplings, 7 lead to a
cross section that is p-wave suppressed (σv ∝ v2). One should keep in mind that in many realistic
dark matter models, more than one these interactions exist, leading to a combination of velocity-
independent and velocity-suppressed contributions.
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Fermion Bilinear

Fermionic DM f̄ f f̄ γ5 f f̄ γµ f f̄ γµγ5 f
X̄X σv∼ v2 σv∼ v2 − −

X̄γ5X σv∼ 1 σv∼ 1 − −
X̄γµX − − σv∼ 1 σv∼ 1

X̄γµγ5X − − σv∼ v2 σv∼ 1

Scalar DM
φ †φ σv∼ 1 σv∼ 1 − −

φ †
↔
∂µφ − − σv∼ v2 σv∼ v2

Vector DM
X µX†

µ σv∼ 1 σv∼ 1 − −
Xν∂νX†

µ − − σv∼ v2 σv∼ v2

Table 1: A summary of the velocity dependance of the dark matter annihilation cross section for s-channel
diagrams to fermion-antifermion final states. Of the 16 linearly independent combinations of couplings
shown here, 7 lead to a cross section that is p-wave suppressed (σv ∝ v2).

2. Resonant Annihilations

If the dark matter annihilates through or near a resonance, its cross section could be much
higher or lower during freeze-out than at the very low velocities found in halos today [4, 21].
Consider, for example, an annihilation cross section of the following form:

σv =
α2s

(M2
med− s)2 +M2

medΓ2
med

, (1.12)

where Mmed and Γmed are the mass and the width of the particle mediating the annihilation process
and α2 normalizes the cross section. The Mandelstam variable, s = 4m2

X/(1− v2), is equal to
sv→0 = 4m2

X in the low-velocity limit, and to a value roughly 10% larger at the temperature of
thermal freeze-out, sFO ' 4m2

X/(1−0.1)' 1.1(4m2
X). As a first case, consider a scenario in which

MMed ' 2mX , enabling the dark matter to annihilate resonantly at low velocities. In the narrow
width approximation (Γmed�Mmed), this leads to an enhancement of the low-velocity cross section
by a factor of∼ 8× [(Mmed/Γmed)/30]2 relative to the velocity-independent case. Alternatively, we
could instead consider a case in which MMed ' 2.1mX , for which the dark matter annihilates on
resonance during freeze-out. In this case, the low-velocity cross section is suppressed by a similar
factor.

3. Coannihilations

Instead of being depleted through self-annihilations, the dark matter abundance could instead
be established through coannihilations with another particle species, X ′ [4, 22, 23]. The relative
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abundance of such a state at the temperature of freeze-out can roughly be estimated as follows:

nX ′

nX
∼ e−mX ′/TF

e−mX/TF
(1.13)

= e−∆mX/TF

∼ e−20∆,

where ∆ ≡ (mX ′ −mX)/mX is the fractional mass splitting between the two states. For large mass
splittings (∆� 0.1), nX ′ � nX , and the X ′ population will play little role in the process of thermal
freeze-out, or in determining the final X abundance. For smaller splittings (∆ <∼ 0.1), however,
a significant number of X ′ particles will be present during freeze-out, potentially assisting in the
depletion of the X population.

To calculate the impact of coannihilations on the thermal relic abundance, we introduce the
following effective cross section:

σeff(T )≡∑
i, j

σi, j
gig j

g2
eff(T )

(1+∆i)
3/2(1+∆ j)

3/2e−mX (∆i+∆ j)/T , (1.14)

where T is the temperature and gi, j and ∆i, j are the number of internal degrees-of-freedom and the
fractional mass splittings (relative to that of X) of state i, and

geff(T )≡∑
i

gi(1+∆i)
3/2e−mX ∆i/T . (1.15)

As an example, consider two states (X and X ′) that are nearly degenerate (∆X ′ � 1) and that have
an equal number of internal degrees-of-freedom (gX = gX ′). In this case, the effective annihilation
cross section reduces to σeff ' 0.5σXX +0.5σX ′X ′+σXX ′ . If σXX ′ >∼ σXX , coannihilations will play
a major role in the depletion of the X abundance. In the opposite case (σXX ′ � σXX ,σX ′X ′), the X
and X ′ populations each freeze out and contribute to the final dark matter abundance independently.

4. Asymmetric Dark Matter

If you were to carry out the calculation of the thermal relic abundance as described above for
the case of protons and electrons, you would find that almost no such particles should survive the
conditions of the early universe. The baryon-antibaryon annihilation cross section is much larger
than that needed to yield a cosmologically interesting abundance. The abundance of baryons found
in our universe is instead determined by the presence of a primordial matter-antimatter asymmetry.
Namely, for reasons that are not yet understood, the early universe contained slightly more baryons
than antibaryons (and more quarks than antiquarks prior to the QCD phase transition). These
particles stopped annihilating not when the expansion rate caused their abundance to freeze out,
but instead when annihilations had destroyed all of antibaryons that had once been present in the
universe.

It is possible that there could have also been a primordial asymmetry between the number of
dark matter particles, X , and antiparticles, X̄ , in the early universe [24, 25, 26, 27]. If this is the
case, then the XX̄ annihilation cross section could in principle be much larger than our benchmark
value of 2× 10−26 cm3/s. But despite this large cross section, the annihilation rate could still
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be very low in the universe today, as a result of the absence of X̄ particles. In such a scenario,
the prospects for indirect detection could be highly suppressed. Alternatively, X − X̄ oscillations
could repopulate this population, potentially leading to very high annihilation rates in the current
epoch [28, 29].

5. Sommerfeld Enhancements

In some dark matter models, long-range interactions can enhance the annihilation cross sec-
tion at low velocities [30, 31]. This effect, known as the “Sommerfeld enhancement”, is most
pronounced in cases in which the mediator is much lighter than the dark matter itself, Mmed <∼mX v.
A well studied example is that of dark matter in the form of a TeV-scale, wino-like neutralino. In
this case, the low-velocity annihilation cross section can exceed the thermal relic benchmark value
by up to 1 to 2 orders of magnitude.

6. Out of Equilibrium Decays and Other Non-Thermal Production Mechanisms

In addition to any thermal abundance of a particle species that might arise, an additional non-
thermal population could be generated through, for example, the decays of another species that is
not in equilibrium with the thermal bath [8, 9, 10, 11, 12]. Moduli are an example of a theoretically
well-motivated state that is predicted to fall out of equilibrium before it decays, potentially leading
to the production of a non-thermal dark matter population. In such scenarios, it is possible for
the dark matter annihilation cross section to be considerably higher than generally predicted for a
thermal relic.

7. Non-Standard Cosmological Histories

Unless altered by new physics, the energy density of our universe was dominated by radiation
(i.e. relativistic particles) during the first ∼ 105 years of its (post-inflationary) history. If there
exists a long-lived particle species that becomes non-relativistic in the early universe, the energy
density of its population will evolve like ρ ∝ a−3, whereas radiation dilutes as ρ ∝ a−4. As a
result, the non-relativistic species will increasingly come to dominate the energy density of the
early universe, potentially leading to an era of matter domination [32, 8, 12, 15, 16, 9]. This
could impact the abundance of dark matter in at least two different ways. First of all, when the
long-lived particles ultimately decay, they could produce dark matter particles, as described in
the paragraph directly above this one. Furthermore, such decays could dilute the dark matter’s
thermal abundance, lowering the annihilation cross section that is required to generate the measured
cosmological density. Alternatively, the expansion history of the early universe could be altered
by the presence of an era of rapid expansion, known as late-time inflation [33, 34, 35, 36, 17]. If
this occurs after freeze-out, such an event would dilute the abundance of dark matter and lower the
expected annihilation cross section.

2. Gamma-Ray Searches for Dark Matter Annihilation Products

If the dark matter annihilates with a cross section near the thermal relic benchmark value,
〈σv〉 ' 2.2×10−26 cm3/s, this could potentially lead to an observable flux of energetic particles,
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including gamma rays and cosmic rays. Searches for dark matter using gamma-ray telescopes
benefit from the fact that these particles are not deflected by magnetic fields and are negligibly
attenuated over Galactic distance scales, making it possible to acquire both spectral and spatial
information, unmolested by astrophysical effects.

The possibility that gamma-ray telescopes could be used to detect the annihilation products of
dark matter particles was first suggested in a pair of papers published in 1978 by Jim Gunn, Ben
Lee, Ian Lerche, David Schramm and Gary Steigman [37], and by Floyd Stecker [38]. Today, four
decades later, gamma-ray searches for dark matter provide us with some of the most stringent and
robust constraints on the dark matter’s annihilation cross section.

The dark matter annihilation rate per volume is given by 〈σv〉ρ2
X/2m2

X , where ρX is the dark
matter density and the factor of 1/2 is included to avoid double counting the annihilations of particle
A with particle B, and particle B with particle A. Here we are assuming that the annihilating
particles are their own antiparticle (XX). If we were instead to consider annihilations between
dark matter and anti-dark matter (XX̄), the annihilation rate would be half as large for a given value
of the cross section. However, the annihilation cross section must also be twice as large in this case
in order to obtain the desired relic abundance, and thus the overall annihilation rate of a thermal
relic today remains the same, regardless of whether the dark matter candidate is or is not its own
antiparticle.

To calculate the spectrum and angular distribution of gamma rays from dark matter annihila-
tions per unit time from within a solid angle, ∆Ω, we integrate the annihilation rate over the solid
angle observed, and over the line-of-sight:

Φγ(Eγ ,∆Ω) =
1
2

dNγ

dEγ

〈σv〉
4πm2

X

∫

∆Ω

∫

los
ρ

2
X(l,Ω)dldΩ, (2.1)

where dNγ/dEγ is the spectrum of gamma rays produced per annihilation, which depends on the
mass of the dark matter particle and on the types of particles that are produced in this process. In
practice, such spectra are often calculated using software such as PYTHIA [39]. In addition to
prompt gamma rays, dark matter annihilations can produce electrons and positrons which generate
gamma rays through inverse Compton and bremsstrahlung processes [40, 41, 42].

The basic characteristics of dNγ/dEγ depend primarily on the dominant annihilation channels
of the dark matter particle. For annihilations to quark-antiquark pairs, the resulting jets produce
photons through the decays of neutral pions, resulting in a spectrum that typically peaks at an
energy around ∼mX/20 (in E2

γ dNγ/dEγ units). For dark matter that is heavy enough to produce W
or Z pairs in their annihilations, the resulting gamma-ray spectrum is similar. In contrast, if the dark
matter annihilates to charged lepton pairs, the resulting spectrum is predicted to be quite different.
Annihilations to τ+τ− produce a gamma-ray spectrum that is fairly sharply peaked around∼mX/3
(due to the harder spectrum of neutral pions). In the case of annihilations to e+e− or µ+µ− the
gamma-ray spectrum is dominated by final state radiation (rather than pion decay) and inverse
Compton scattering, generally resulting in a smaller flux of higher-energy photons.

The quantity described by the integrals in Eq. 2.1 is often referred to as the J-factor, which
encodes all of the relevant astrophysical information. To build some intuition for the annihilation
J-factor, consider the simple example of dark matter particles annihilating in a spherical dwarf
galaxy of radius r, uniform density ρ , and located at a distance d. For d� r, this J-factor is given
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by:

J ≡
∫

∆Ω

∫

los
ρ

2
X(l,Ω)dldΩ' 4πr3ρ2

X

3d2 . (2.2)

From this simple example, we can see that the most promising targets of gamma-ray searches for
dark matter are those that:

1. Have a high density of dark matter (J ∝ ρ2
X )

2. Are nearby (J ∝ d−2)

3. Are extended across a large volume (J ∝ V )

4. Are accompanied by low and/or well-understood astrophysical backgrounds.

The first three of these conditions are best satisfied by the inner volume of the Milky Way,
sometimes referred to as the Galactic Center. The Galactic Center is almost certain to be the
brightest single source of dark matter annihilation products on the sky. This direction, however, is
also plagued by large and imperfectly understood astrophysical backgrounds. At the other extreme
are the Milky Way’s dwarf galaxies, which have much smaller J-factors than the Galactic Center,
but are accompanied by much smaller gamma-ray backgrounds. Intermediate strategies include
observations of other promising targets, including galaxy clusters [43], the halo of the Milky Way,
and the isotropic gamma-ray background [44, 45, 46, 47, 48].

Modern gamma-ray astronomy is conducted using a combination of space-based and ground-
based telescopes, each of which offer various advantages and disadvantages. At energies between
0.1 and 100 GeV, this field is dominated by the Fermi Gamma-Ray Space Telescope, which has
been in orbit around Earth since 2008. Fermi observes the entire sky with an angular resolution on
order of a degree and an energy resolution of around 10%. Among other science goals, Fermi was
designed to offer unprecedented sensitivity to dark matter annihilation products [49], in particular
from the direction of the center of the Milky Way [50, 51, 52, 53, 54, 55, 56]. At higher energies,
ground-based air Cherenkov telescopes offer the greatest sensitivity, including as HESS [57, 58,
59], VERITAS [60, 61] and MAGIC [62, 63] (and in the future, CTA [64]). While these instruments
have far greater angular resolution than Fermi, they must be pointed at specific targets and are only
sensitive to gamma rays with energies above around ∼ 102 GeV. The HAWC telescope is also
sensitive in the case of very heavy dark matter particles [65, 66].

2.1 Dwarf Galaxies

The Milky Way’s dark matter halo contains a large number of smaller subhalos, the largest of
which contain stars and constitute satellites of our galaxy. The satellite population of the Milky
Way includes the classical dwarfs (Draco, Ursa Minor, Sculptur, Fornax, etc.), as well as several
dozen ultra-faint galaxies that were discovered using data from modern surveys, including the Sloan
Digital Sky Survey (SDSS) and the Dark Energy Survey (DES) [67, 68].

Although dwarf galaxies are typically discovered using photometric data, spectroscopic follow
up observations can measure the line-of-sight velocities of the brightest stars in these systems. This
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Figure 2: The J-factors inferred for a collection of Milky Way dwarf galaxies, averaged over a 0.5◦ radius,
as presented in Ref. [72], and compared to the results of three other groups [73, 74, 75]. Notice that the
distance to the dwarf galaxy (shown across the bottom of the panel) is a fairly strong predictor of its J-factor.

information can then be used to infer information about the underlying dark matter distribution, and
to estimate the annihilation J-factor of each dwarf.

In making such estimates, most groups assume that a given dwarf galaxy is, 1) in steady state,
2) spherically symmetric, and 3) negligibly rotationally supported. Under such assumptions, one
can derive the 2nd order Jeans equation, which can be solved and projected along the line-of-
sight to produce the predicted velocity dispersion as a function of angular radius. This is then
compared to the measured distribution of velocities to generate constraints on the J-factor of the
dwarf [69, 70, 71].

There are a number of challenges involved in deriving constraints on dwarf galaxy J-factors.
First of all, it is not obvious that the three assumptions mentioned in the previous paragraph are
valid. In particular, dwarf galaxies are not expected to be perfect spherical, a factor which can
non-negligibly skew the value of the inferred J-factor. Furthermore, for many ultra-faint dwarfs,
spectroscopic measurements exist for only a small number of stars. Making this more perilous is
the fact that it is not always clear which stars are in fact gravitationally bound to a given dwarf. In
the case of Segue 1, for example, quite different J-factor determinations can result depending on
how the question of stellar membership is precisely treated [71].

In Fig. 2 (from Ref. [72]), we show the J-factor determinations for 21 Milky Way dwarf galax-
ies, as presented by several groups [72, 73, 74, 75]. Note that the largest J-factors are generally
found for those dwarfs that are most nearby, and that the error bars associated with ultra-faint
dwarfs are typically much larger than those of the classical dwarfs.

As an example, consider the classical dwarf galaxy Draco, which has a measured J-factor of
J ' 1018.8 GeV2/cm5. Combining this number with Eq. 2.1 leads to the following estimate for the
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gamma-ray flux from this satellite:

Φγ '
1
2
〈σv〉
4πm2

X
J
∫ dNγ

dEγ

dEγ (2.3)

≈ 5×10−12 cm−2s−1
( 〈σv〉

2×10−26 cm3/s

)(∫ dNγ

dEγ
dEγ

10

)(
100GeV

mX

)2( J
1018.8 GeV2/cm5

)
.

Multiplying the above flux by Fermi’s effective area of ' 8500 cm2, and by the fact that this tele-
scope observes a given portion of the sky ∼ 20% sky of the time, we arrive at an estimate that
this instrument would detect approximately 0.3 photons per year from dark matter annihilations in
Draco (for the parameters shown in the brackets). Given that this is much smaller than the flux as-
sociated with the extragalactic gamma-ray background (in addition to the contribution from diffuse
emission mechanisms in the Milky Way), we conclude that Fermi is not sensitive to dark matter
annihilation in Draco, at least for this choice of parameters. More optimistically, we could instead
consider dark matter in the form of a thermal relic with a mass of 30 GeV, increasing the predicted
gamma-ray flux by more than an order of magnitude. Over ten years of observation, one would
expect such a scenario to lead to a few dozen signal events, which could constitute a modest excess
(∼ 1-2σ ) over known backgrounds.

In practice, constraints are placed by stacking many dwarf galaxies as a part of a combined
analysis. Some of the main results from the Fermi Collaboration’s most recent dwarf galaxy anal-
ysis are shown in Fig. 3 (see also Refs. [77, 78, 79, 62, 63, 60]). This analysis is based on a stack
of 15 dwarfs, and it excludes dark matter candidates with 〈σv〉 = 2× 10−26 cm3/s up to masses
of ∼ 60 GeV for the case of annihilations to bb̄. It is also interesting to note that statistically mod-
est gamma-ray excesses have been detected from the directions of a few dwarf galaxies, including
Recticulum II and Tucana III [80, 81, 82]. If these are authentic signals of dark matter, it would
suggest a mass in the range of ∼ 50− 100 GeV (for annihilations to bb̄) and a cross section near
∼ 10−26 cm3/s.

Looking forward, the constraints on annihilating dark matter based on gamma-ray observations
of dwarf galaxies are expected to improve due to, 1) the growing data set from Fermi (and future
gamma-ray telescopes, such as AMIGO or e-ASTROGAM), and 2) the discovery of new ultra-
faint dwarf galaxies that are expected from LSST and other surveys. It is anticipated that Fermi’s
sensitivity to dark matter annihilation in dwarf galaxies will improve substantially in the LSST era.

2.2 The Galactic Center

The Galactic Center is expected to be the single brightest source of dark matter annihilation
products on the sky, but is also plagued by bright and imperfectly understood astrophysical back-
grounds. Furthermore, the prospects for detecting dark matter from this region depend critically
on the distribution of dark matter in the central volume of the Milky Way. In fact, the flux of dark
matter annihilation products that is predicted from the innermost degree or so around the Galactic
Center (corresponding to approximately the angular resolution of Fermi’s Large Area Telescope)
can vary by orders of magnitude, depending on the halo profile that is adopted [83, 84]. The sen-
sitivity of ground-based gamma-ray telescopes, with much greater angular resolution, can depend
even more strongly on the halo profile’s inner slope [85, 86, 87, 88].
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Figure 3: Upper Frames: The local detection significance, expressed as a log-likelihood test statistic
(TS), from the Fermi Collaboration’s analysis of a collection of dwarf galaxies, for the cases of dark matter
annihilating to bb̄ (left) or τ+τ− (right). Lower Frames: Upper limits (95% confidence level) on the dark
matter annihilation cross section, compared to the expected sensitivity (colored bands). This analyses rules
out the simple relic benchmark annihilation cross section (〈σv〉 ∼ 2×10−26 cm3/s) for masses up to ∼ 60
GeV (for the case of annihilations to bb̄). From Ref. [76].

Numerical simulations of cold, collisionless dark matter particles yield profiles with high cen-
tral densities [89, 90]. A common parameterization for this distribution is the generalized Navarro-
Frenk-White (NFW) halo profile [91, 92]:

ρ(r) ∝
(r/Rs)

−γ

(1+ r/Rs)3−γ
, (2.4)

where Rs ∼ 20 kpc is the scale radius of the Milky Way. While the canonical NFW profile is
defined such that γ = 1, other values for the inner slope are also commonly adopted (as well as
other parameterizations, such as the Einasto profile [93]). In particular, modern simulations which
include the effects of baryonic processes have been found to yield a wide range of inner profiles,
γ ∼ 0.5−1.4 [94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109]. Empirically
speaking, we have only a modest degree of information about the shape of the Milky Way’s dark
matter halo profile. More specifically, although many groups have presented dynamical evidence
in support of dark matter’s presence in the Milky Way [110, 111, 112, 113, 114, 115, 116, 117,
118], these measurements provide relatively little information about dark matter in the innermost
kiloparsecs of the Galaxy. We also note that although dark matter halos are expected to exhibit
some degree of triaxiality (see, for example, Ref. [119]), the Milky Way’s dark matter halo is
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generally predicted to produce an annihilation signal that is approximately radially symmetric with
respect to the Galactic Center [109].

As a simple example, consider dark matter that is distributed according to a standard NFW
profile with Rs = 20 kpc and a local density of 0.4 GeV/cm3. Using Eq. 2.1, this yields the following
flux of gamma-ray annihilation products originating from the innermost 2 kpc around the Galactic
Center:

Φγ ∼ 10−8 cm−2s−1
( 〈σv〉

2×10−26 cm3/s

)(∫ dNγ

dEγ
dEγ

10

)(
100GeV

mX

)2

. (2.5)

The first thing to notice about this flux is that it is more than three orders of magnitude larger
than that predicted from the brightest dwarf galaxies. The problem, of course, is that of astrophys-
ical backgrounds. The dominant gamma-ray backgrounds from this region of the sky consist of
diffuse emission resulting from, 1) pion production via cosmic-ray proton scattering with gas, 2)
cosmic-ray electron scattering with radiation via inverse Compton scattering, and 3) cosmic-ray
electron scattering with gas via Bremsstrahlung. Models for these backgrounds are built using
inputs such as gas maps, and models of cosmic-ray transport. And while such models are often
capable of describing the broad features of the observed Galactic diffuse emission, they cannot
(and should not be expected to) account for the detailed spectral or morphological characteristics
of this background. In addition, significant backgrounds also arise from gamma-ray point sources,
such as supernova remnants, pulsars, blazars and the Milky Way’s central supermassive black hole
(Sgr A∗).

Fermi’s observations of the Galactic Center have been used to place some of the most stringent
constraints on the dark matter annihilation cross section, and in Fig. 4 these results are shown [120]
(see also Ref. [83]). Results are presented for annihilations to bb̄ and τ+τ− final states and for
the case of an NFW profile (γ = 1) or a generalized NFW profile with γ = 1.25 (in each case with
Rs = 20 kpc and a local density of 0.4 GeV/cm3). These constraints are compared to those derived
from stacked observations of Milky Way dwarf galaxies. In evaluating such results, it is important
to keep in mind that the constraints based on the Galactic Center can vary considerably depending
on the assumptions made regarding the Milky Way’s halo profile (i.e. the values of γ , Rs, ρlocal).

1. The Galactic Center Gamma-Ray Excess

In 2009, Lisa Goodenough and I began to analyze the publicly available Fermi data in an effort
to place constraints on any contribution from annihilating dark matter. In October of that year, we
posted to the arXiv the first paper to identify what would become known as the Galactic Center
gamma-ray excess [122]. Over the following years, a number of studies [123, 124, 125, 126, 127,
128] improved upon this early work. By 2014 or so [121], a consensus had begun to form that the
excess is in fact present, and exhibited the following characteristics:

• The spectrum of the excess peaks at an energy of ∼ 1-5 GeV and falls off at both higher
and lower energies (in E2dN/dE units). The spectrum also appears to be uniform, without
detectable variations throughout the Inner Galaxy [129]. If interpreted as dark matter anni-
hilation products, the spectral shape implies a dark matter candidate with a mass in the range
of ∼ 40-70 GeV (for the case of annihilations to bb̄). See Figs. 6 and 7.
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Figure 4: Constraints on the dark matter annihilation cross section from Fermi’s observations of the Galactic
Center as a function of mass, for annihilations to bb̄ (left) and τ+τ− (right) final states. Results are shown for
the case of an NFW profile (γ = 1) or a generalized NFW profile with γ = 1.25 (in each case with Rs = 20
kpc and a local density of 0.4 GeV/cm3). These results are compared to the constraints derived from the
stacked observations of Milky Way dwarf galaxies. From Ref. [120].

Figure 5: The raw (left) and residual (right) intensity maps of the gamma-ray emission from the Inner
Galaxy, as presented in Ref. [121]. Although the existence of this excess was controversial for several years,
by 2014 a consensus had begun to form that this signal is indeed present in the Fermi data. The origin of
this emission remains hotly debated today.
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Figure 6: The spectrum of the Galactic Center gamma-ray excess as presented in 2017 by the Fermi Col-
laboration, across a range of background models [120]. Although the detailed spectral shape of this signal
can vary significantly depending on the background model that is adopted, the excess persists across all such
variations.

• The angular distribution of the excess is approximately azimuthally symmetric with respect
to the Galactic Center, with a flux that scales as Fγ ∝ r−Γ with Γ = 2.0− 2.7, where r is
the distance to the Galactic Center [121, 130, 129, 131, 132, 120]; see Fig. 7. The emission
continues with roughly this profile out to at least 10◦− 20◦ away from the Galactic Center
(where it becomes too faint to reliably characterize). If interpreted in terms of dark matter
annihilation, the observed morphology implies a halo profile with an inner slope of γ =

Γ/2∼ 1.0−1.35 (see Eq. 2.4).

• The overall intensity of the excess is consistent with that expected from a dark matter candi-
date with an annihilation cross section of roughly 〈σv〉 ∼ 10−26 cm3/s. See Fig. 7.

From early on, it was appreciated that these characteristics are each broadly consistent with the
expectations of dark matter in the form of a simple annihilating relic. It was also realized, however,
that the astrophysical backgrounds from this region were not particularly well understood. Of
particular concern were those potential backgrounds associated with gamma-ray pulsars [123, 133,
123, 125, 134, 126, 135, 130, 136] and recent cosmic-ray outburst events [137, 138, 139].

The gamma-ray emission observed from pulsars exhibits a spectral shape that is, in most cases,
similar to that of the observed excess. Motivated by the possibility that the Galactic Center gamma-
ray excess might originate from a population of unresolved gamma-ray pulsars, statistical tests
were performed on the Fermi data to search for evidence of sub-threshold sources. In particular,
Bartels, Krishnamurthy and Weniger utilized a wavelet-based technique designed to test for the
presence of a large number of sub-threshold point sources [140], while Lee, Lisanti, Safdi, Slatyer
and Xue employed a non-Poissonian template fitting technique to a similar end [141]. Each of
these groups reported the detection of small-scale power in the photon distribution in the Inner
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Figure 7: Upper frames: The spectrum of the gamma-ray excess as measured in ten different sub-regions
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Galaxy, and interpreted these results as evidence for a significant population of unresolved gamma-
ray point sources. Today there is a consensus that the Fermi data from this region of the sky
does, in fact, exhibit significant small scale power, possibly indicative of such a population. In my
opinion, however, it is not at all clear that pulsars are responsible for the observed excess. While
the small scale power reported in Refs. [140, 141] might reflect a large population of unresolved
point sources, it is also entirely plausible that such a feature could arise as the result of imperfect
modeling of diffuse backgrounds. Furthermore, if pulsars are responsible for the excess, it is
somewhat surprising that we have not yet detected any individual pulsars from this region of the
Galaxy [142, 136, 143], or observed more low-mass X-ray binaries [144]. In any case, it is clear
that more data will be required to clarify this situation. Particularly promising are further gamma-
ray observations of dwarf galaxies, as well as future radio searches for millisecond pulsars in the
Inner Galaxy [145].

2.3 The Isotropic Gamma-Ray Background

Dark matter annihilations could produce significant contributions to the isotropic gamma-ray
background (IGRB). In particular, the IGRB is expected to receive contributions from dark matter
annihilating in the halo of the Milky Way, as well as from the integrated annihilation rate over
the large scale structure of the universe. Furthermore, over cosmological distances, a significant
fraction of high-energy gamma rays scatter with the cosmic radiation backgrounds, producing e+e−

pairs which then go on to generate additional gamma rays as part of an electromagnetic cascade.
The Fermi Collaboration has measured the IGRB at energies between 100 MeV to 820 GeV [146].

Although previously detected by other instruments [147, 148], Fermi’s measurement of the IGRB
has provided a more detailed description of its characteristics and led to a more complete under-
standing of its origin.

It has long been speculated that the majority of the IGRB is produced by a large number of
unresolved sources, such as active galactic nuclei (AGN) [149, 150, 151, 152, 153, 154, 155, 156,
157, 158] and star-forming galaxies [159, 160, 161, 162], perhaps along with contributions from the
annihilations or decays of dark matter particles [163, 164, 165, 166]. In recent years, Fermi’s de-
tection of gamma-ray emission from both non-blazar AGN [167] and star-forming galaxies [168],
combined with the observed correlations of the emission at gamma-ray and radio/infrared wave-
lengths, has revealed that these source classes each contribute significantly to the IGRB. Even
more recent studies have shown that the combination of these source classes dominates the ob-
served IGRB [169, 170], leaving relatively little room for the presence of dark matter annihilation
products.

The high-latitude gamma-ray sky receives contributions from several different processes asso-
ciated with the annihilation of dark matter particles. First, dark matter particles annihilating in the
halo of the Milky Way generate a flux of gamma rays that can be calculated using Eq. 2.1. While
this emission is not strictly isotropic, the line-of-sight integral in Eq. 2.1 departs by less than 10%
from the average value within the range of angles that contribute to Fermi’s measurement of the
IGRB (|b| > 20◦). A component of gamma-ray emission with such a small degree of variation
across the high-latitude sky would be indistinguishable from the overall IGRB.

Dark matter annihilations beyond the boundaries of the Milky Way also contribute to the
IRGB. Over cosmological distances, however, gamma rays are much more likely to be attenu-
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ated via pair production, thereby initiating electromagnetic cascades. Neglecting attenuation for
the moment, the spectrum of gamma rays per area per time per solid angle from annihilating dark
matter is given by:

dNγ

dEγ

(Eγ) =
c

8π

∫ 〈σv〉ρ2
X(z)dz

H(z)(1+ z)3 m2
X

(
dNγ

dE ′

)

E ′=Eγ (1+z)
, (2.6)

where H(z) = H0[ΩM(1+ z)3 +ΩΛ]
0.5 is the expansion rate of the universe in terms of the cos-

mological parameters ΩM = 0.31, ΩΛ = 0.69 and H0 = 67.7 km/s [5]. Although the average dark
matter density evolves as ρX(z) ∝ (1+ z)3, the clumping of dark matter into halos plays a very
important role in this integral, effectively boosting the annihilation rate to potentially observable
levels. Lastly, the quantity dNγ/dE ′ is the gamma-ray spectrum produced per annihilation, after
accounting for the effects of cosmological redshift.

High-energy gamma rays are significantly attenuated through their scattering with infrared,
optical and microwave radiation fields [171, 172, 173, 174, 175]. The inverse mean free path of
these interactions is given by:

l−1(Eγ ,z) =
∫

σγγ(Eγ ,ε)
dn
dε

(ε,z)dε, (2.7)

where σγγ is the total pair-production cross section [176] and dn(ε,z)/dε is the differential num-
ber density of target photons at redshift, z [177]. In practice, such interactions make the universe
opaque to photons with energies greater than a few hundred GeV, causing the photons and elec-
trons above this threshold to have their energy transferred into an electromagnetic cascade with a
universal spectrum that peaks mildly at ∼ 100 GeV and extends across the entire range of energies
measured by Fermi.

Fermi’s measurement of the IGRB has been used to produce constraints on the dark matter’s
annihilation cross section that are competitive with, although slightly weaker than, those derived
from observations of dwarf galaxies and the Galactic Center [46, 47, 48, 45, 44]. Given that these
constraints rely on a different set of astrophysical uncertainties, they remain relevant through their
complementarity to these other techniques.

3. Cosmic-Ray Searches for Dark Matter Annihilation Products

The cosmic-ray spectrum is dominated by protons and nuclei. At energies below the “knee”
(Eknee ∼ 106 GeV), most of these particles are thought to originate from Galactic supernova rem-
nants. At higher energies, this spectrum is instead dominated by particles that originate from
sources beyond the boundaries of the Milky Way, perhaps including active galactic nuclei. At all
energies, the cosmic-ray spectrum is dominated by matter over antimatter. It has long been ap-
preciated that if dark matter particles are annihilating or decaying in the halo of the Milky Way,
such processes would (in most models) produce equal amounts of matter and antimatter, leading
to an excess of antimatter relative to that predicted by standard astrophysical mechanisms. In this
sense, indirect searches for dark matter using cosmic rays are often (but not always) searches for
cosmic-ray antimatter, such as antiprotons, positrons, or anti-deuterons [178, 179, 180, 181, 182,
183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195].
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Once cosmic rays are injected into the halo, they move via diffusion, random walking through
the Milky Way’s tangled magnetic field, while also undergoing interactions that can lead to en-
ergy losses, decay, etc. These processes are collectively described by the cosmic-ray transport
equation [196]:

∂

∂ t
dn
dE

(E,~x, t) = ~5·
[

D(E,~x)~5 dn
dE

(E,~x, t)
]
+

∂

∂E

[
dE
dt

(E)
dn
dE

(E,~x, t)
]
+Q(E,~x, t),

(3.1)

where dn/dE is the differential number density of cosmic rays, D is the diffusion coefficient, and
the source term, Q, describes the spectrum, distribution, and time profile of cosmic rays injected
into the halo (or removed from the halo in case of decay or spallation). This equation is gener-
ally solved in the steady-state limit (setting the left side equal to zero), and for a set of boundary
condition. More specifically, a cylindrical geometry is generally adopted, enclosing a volume with
a half-thickness of Lz ∼ (1− 6)kpc and a radius of ∼ 20 kpc, beyond which the particles are not
confined by the Galactic Magnetic Field and freely escape.

The source term in Eq. 3.1 includes contributions from individual sources of cosmic-ray elec-
trons (supernova remnants, pulsars, etc.), as well as secondary particles, which are produced
through the interactions of other cosmic rays. Secondary electrons and positrons, for example,
are generated in the decays of pions and kaons that are produced in the collisions of hadronic cos-
mic rays with gas. The flux of cosmic-ray secondaries can be calculated from Eq. 3.1 by setting
Q =

∫
Jpngas(dσ/dE)dEp, where Jp is the flux of hadronic cosmic rays, ngas is the gas density, and

dσ/dE is the differential cross section for the production of secondaries [197, 198].
Detailed models of cosmic-ray transport have many free parameters, including the spatial dis-

tribution and spectrum of sources, the energy and spatial dependance of the diffusion constant,
the boundary conditions of the diffusion zone, as well as those which account for effects such as
convection, diffusive reacceleration and solar modulation. Fortunately, there are also many inde-
pendent observations that can be used to constrain these parameters. In particular, by measuring
the energy-dependent ratios of secondary-to-primary cosmic rays, we can infer a great deal about
cosmic-ray transport. In particular, stable secondary-to-primary ratios (such as boron-to-carton)
inform us about the average amount of matter traversed by cosmic rays as a function of energy.
Unstable secondary-to-primary ratios, in contrast, serve as a measurement of the amount of time
that cosmic rays have been propagating. Beryllium-10 is particularly useful in this regard, being
the longest lived and best measured unstable secondary. The measurement of 10Be/9Be thus serves
as a clock, since the ratio of the radioactive isotope to the stable one is directly related to the amount
of time elapsed since the creation of the particles. When global fits are performed to the current set
of cosmic-ray data, one finds D(E)' (3.9×1028 cm3/s)E0.3 and Lz ' 4 kpc.

To build some intuition for cosmic-ray transport, consider the simple example of a burst-like
source of cosmic-ray protons that occurs at a particular place and time within the diffusion zone
of the Galaxy. In this case, the source term is given by Q = Q0δ (~x)δ (t), and for protons we can
safely neglect any energy losses. The transport equation then reduces to the following:

∂

∂ t
n(~x, t) = ~5·

[
D(~x)~5n(~x, t)

]
+Q0δ (~x)δ (t), (3.2)
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whose solution is n ∝ (Dt)−3/2 exp(−r2/4Dt), where r is the radial distance to the source. The
main feature of this solution is that these particles diffuse outward from the source a distance of
order Ldif ∼

√
Dt, which scales with the square root of time as one would expect for a random

walk. For a diffusion constant of D = 3.9× 1028× (E/GeV)0.3, the diffusion length is given by
Ldif ∼ 800pc× (E/100GeV)1/6(t/Myr)1/2. Note that this result is easily generalizable to the case
of an arbitrary injection history by summing the results for a series of burst-like events.

In the case of cosmic-ray electrons and positrons, it is important to include the effects of energy
losses from inverse Compton scattering and synchrotron [199]:

− dEe

dt
(r) = ∑

i

4
3

σT ρi(r)Si(Ee)

(
Ee

me

)2

+
4
3

σT ρmag(r)
(

Ee

me

)2

(3.3)

≈ 1.02×10−16 GeV/s ×
[
∑

i

(
ρi(r)

eV/cm3

)
Si(Ee)+0.224

(
B

3 µG

)2]( Ee

GeV

)2

,

where σT is the Thomson cross section and the sum is carried out over the various components of
the radiation backgrounds, such as the cosmic microwave background (CMB) and starlight, as well
as infrared and ultraviolet emission. The quantity, S, is the Klein-Nishina factor, which suppresses
inverse Compton scattering at very high energies (Ee >∼ m2

e/2T ) [200]:

Si(Ee)≈
45m2

e/64π2T 2
i

(45m2
e/64π2T 2

i )+(E2
e /m2

e)
. (3.4)

If we consider a burst-like source of cosmic-ray electrons/positrons, we find that energy losses
limit the distance that such particles can propagate, especially at high energies. It follows from
Eq. 3.3 that a 100 GeV (1 TeV) electron will lose most of its energy over a timescale of tloss ∼ 3
Myr (300 kyr), over which Ldif ∼ 1.4kpc (400 pc). From this exercise, we conclude that only a
relatively small volume of the local Galaxy contributes to the observed high-energy cosmic-ray
electron/positron spectrum.

3.1 Cosmic-Ray Positrons

In 2008, the collaboration of scientists operating the satellite-based experiment PAMELA re-
ported that the cosmic-ray positron fraction (the ratio of positrons to positrons-plus-electrons) rises
between approximately 10 GeV and 100 GeV [201] (see also Ref. [202]). While consistent with
previous indications from HEAT [203] and AMS-01 [204], this rise is in stark contrast to the behav-
ior expected for a positron spectrum dominated by secondary particles produced during cosmic-ray
propagation [197]. Within this context, the possibility that annihilating dark matter might be re-
sponsible for this signal generated a great deal of interest [205, 206, 207, 208, 209], although it
was also pointed out that nearby pulsars [210] or the acceleration of secondary positrons in super-
nova remnants [211, 212] could potentially account for the excess positrons. In any case, the rising
positron fraction requires a source (or sources) of cosmic-ray positrons beyond that associated with
standard secondary production.

When the data from PAMELA was combined with that from AMS-02, as well as the elec-
tron+positron spectrum from Fermi, it became clear that in order for dark matter to generate this
signal, the particle would have to be quite heavy (∼ 1-3 TeV) and annihilate into light intermediate
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Figure 8: The cosmic-ray positron fraction (left) and electron+positron spectrum (right) in models in which
the dark matter annihilates into a pair of intermediate states, φ , which proceed to decay to to µ+µ−, π+π−,
or to a 1:1:2 ratio of e+e−, µ+µ−, and π+π−. The error bars shown represent the positron fraction as
measured by AMS-02 (black, left) and PAMELA (red, left), and the electron+positron spectrum as measured
by Fermi and AMS-01 (black, right). In each case, the parameters of the Galactic cosmic-ray transport
model were selected in order to provide a good fit to the various secondary-to-primary ratios. The expected
backgrounds from standard secondary production are shown as black dotted lines. From Ref. [214].

states [31, 213]; see Fig. 8 [214]. Light mediators could also induce Sommerfeld enhancements,
thereby allowing a heavy thermal relic to generate a large observed flux of positrons.

If astrophysical sources were responsible for the rising positron fraction, those sources must
reside within several hundred parsecs of the Solar System, due to the rapid energy losses of high-
energy electrons/positrons. Within this context, the nearby pulsars Geminga and Monogem (also
known as B0656+14) are particularly interesting. In fact, it was shown in Ref. [210] that if these
sources deposited on the order of 10% of their energy budget into high-energy electron-positron
pairs, they could account for the observed positron excess.

In 2017, the HAWC Collaboration released their first measurements of the very high-energy
(multi-TeV) gamma-ray emission from the Geminga and Monogem pulsars [215], finding that the
emission from these sources follows a diffusive profile extending out to at least∼ 5◦ in radius (cor-
responding to a physical extent of ∼ 25 pc) [216]. The spatially extended nature of this emission
indicates that it is generated through the inverse Compton scattering of very high-energy electrons
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Figure 9: Left: The AMS positron fraction as measured by AMS-02 and background+signal fit for dark
matter annihilating directly to e+e−, for dark matter masses of 10 or 100 GeV. The normalization of the dark
matter signal in each case was chosen such that it is excluded at the 95% confidence level. For visibility, the
contribution from dark matter (lower lines) has been rescaled as indicated. Right: Upper limits (95% confi-
dence level) on the dark matter annihilation cross section, as derived from the AMS-02 positron fraction, for
various leptonic final states. The dotted portions of the curves are potentially affected by solar modulation,
and are thus subject to sizable systematic uncertainties. From Ref. [218].

and positrons with the cosmic microwave background and other radiation fields. Furthermore, the
fluxes of very high-energy gamma-rays observed from Geminga and Monogem indicate that these
sources inject a flux of positrons into the local interstellar medium that is approximately equal to the
value required to account for the observed positron excess. This new information strongly favors
the conclusion that the positron excess is generated by nearby pulsars, diminishing the motivation
for annihilating dark matter or other exotic mechanisms [217].

Even if dark matter is not responsible for the excess positrons observed by PAMELA and
AMS-02, it is possible to use these measurements to place constraints on annihilating dark matter,
in particular in the case of annihilations to charged leptons. In Fig. 9 we show the constraints that
result from the lack of a distinctive feature in the cosmic-ray positron spectrum [218, 219]. For
dark matter that annihilates to e+e− (µ+µ−), this constraint rules out the thermal relic benchmark
cross section for masses up to ∼ 170 GeV (∼ 100 GeV).

3.2 Cosmic-Ray Antiprotons

In addition to positrons, the AMS-02 experiment has also produced a high-precision measure-
ment of the cosmic-ray antiproton spectrum [221]. Analysis of the antiproton-to-proton ratio, in
conjunction with other secondary-to-primary ratios, has found overall agreement with the expec-
tations for standard secondary production over much of the measured energy range. At energies
between 10 and 20 GeV and above 100 GeV, however, there appears to be an excess of antiprotons
(see Fig. 10) [220, 222] (see also Refs. [223, 224, 225]). At the highest energies, this excess could
quite plausibly be the result of the reacceleration of antiproton secondaries produced in supernova
remnants [226]. The excess at 10-20 GeV has no simple explanation, however, and has been inter-
preted as a possible signal of annihilating dark matter [220, 222, 223, 224, 225]. That being said,
systematic uncertainties related to the antiproton production cross section, solar modulation and
cosmic-ray transport make the significance of this feature difficult to assess at this time [227, 228].
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Figure 10: Left: The cosmic-ray antiproton-to-proton ratio as a function of rigidity as measured by AMS-02
compared to that predicted from standard secondary production in the interstellar medium. The lower panel
shows the corresponding residual, with the grey bands representing the 1 and 2σ uncertainties. Although an
excess appears at energies between 10 and 20 GeV, systematic uncertainties associated with the antiproton
production cross section, solar modulation and cosmic-ray transport make the significance of such features
difficult to assess. Right: Constraints on the dark matter annihilation cross section (for annihilations to bb̄)
from the p̄/p ratio. In this frame the grey bands represent the range of constraints that are derived for various
assumptions, and can be treated as an estimate of the systematic uncertainties. From Ref. [220].

Even so, it is intriguing to note that the range of dark matter models favored by the Galactic Center
gamma-ray excess are also well suited to produce an antiproton excess similar to that measured by
AMS-02 (mX ∼ 60−80 GeV, σv∼ 2×10−26 cm3/s). In Fig. 10 we show the antiproton-to-proton
ratio as measured by AMS-02 and the resulting constraints on annihilating dark matter (as well as
the region of parameter space favored to produce the observed excess).

3.3 Anti-Deuterium and Anti-Helium

Although AMS-02 has not yet published the results of their searches for anti-deuterium or
anti-helium events (see, however, Ref. [229]), these channels could potentially provide a powerful
probe of annihilating dark matter [230, 231, 232, 233, 234]. Given the very low fluxes of anti-
deuterium and anti-helium that are predicted from astrophysical sources or mechanisms, even a
handful of such events could constitute a strong signal of annihilating dark matter (or other new
physics). It has even been argued that the observation of a single cosmic-ray anti-deuteron with a
rigidity below 1 GV would constitute a compelling signal of annihilating dark matter [230, 235,
236, 237, 238, 231, 239, 227].

There exist, however, very substantial uncertainties related to the anti-nuclei fluxes predicted
from standard secondary production, as well as from annihilating dark matter. Although these
uncertainties make the prospects for such searches somewhat difficult to assess, measurements of
cosmic-ray nuclei by AMS-02 (as well as GAPS [239, 240]) are generally expected to be among
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the most exciting channels for indirect dark matter searches in the years ahead.

4. Neutrino Searches for Dark Matter Annihilation Products

In addition to gamma rays and cosmic rays, dark matter annihilations can generate high-energy
neutrinos, potentially detectable by telescopes such as IceCube [241, 242] or, at lower energies,
Super-Kamiokande [243]. Strategies similar to those described for gamma-ray telescopes in Sec. 2
have been employed to use neutrino telescopes to search for dark matter annihilation products from
the Galactic Center [244], or the Galactic Halo [245]. Due to the small interaction cross sections
of neutrinos, however, such constraints are in most cases much weaker than those derived from
gamma-ray or cosmic-ray based searches, generally leading to upper limits on the annihilation
cross section that lie between 〈σv〉 ∼ 10−21− 10−23 cm3/s, depending on the mass of the dark
matter candidate and the annihilation channel.

Neutrinos do, however, have a potential advantage over gamma rays and cosmic rays in that
they can penetrate large quantities of matter. As a result, it may be possible to detect neutrinos
that are produced through dark matter annihilations in the core of the Sun or Earth [246, 247,
248, 249, 250]. Unlike most other indirect searches, which depend primarily on the dark matter’s
annihilation cross section, the prospects for detecting such annihilations in the core of the Sun or
Earth also depend in large part on the dark matter’s capture rate, and thus on its elastic scattering
cross section with nuclei. Although the full calculation of the capture rate is involved [251], we
can make a simple back-of-the-envelope estimate for the solar capture rate as follows:

C� ∼ φX(M�/mp)σX p, (4.1)

∼ 1020 s−1×
(

100GeV
mX

)(
σX p

10−42 cm2

)
,

where φX is the flux of dark matter particles in the Solar System, M� is the mass of the Sun, and
σX p is the dark matter-proton elastic scattering cross section. In the lower line of this expression,
we have adopted reasonable values for the local density (ρX = 0.3 GeV/cm3) and velocity distri-
bution (v̄ = 270 km/s) of dark matter particles. A more careful calculation, including the effects
of gravitational focusing and the probability that a scattered dark matter particle will ultimately be
gravitationally bound, leads to the following solar capture rate [251]:

C� ≈ 1.3×1021 s−1×
(

100GeV
mX

)
∑

i

(
Ai σX p S(mX/mi)

10−42 cm2

)
, (4.2)

where Ai denotes the relative abundance of each nuclear species, AH = 1.0, AHe = 0.07, AO =

0.0005, etc. The quantity S(mX/mi) is a kinematic factor, defined as follows:

S(x) =
[

A(x)3/2

1+A(x)3/2

]2/3

, (4.3)

where

A(x) =
3
2

x
(x−1)2

(
vesc

v̄

)2

, (4.4)
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Figure 11: Constraints on the dark matter’s spin-dependent elastic scattering cross section with protons as
derived from observations of the Sun by IceCube, Antares and Super-Kamiokande. From Ref. [241].

and vesc ' 1156 km/s is the escape velocity of the Sun. Notice that for dark matter particles much
heavier than their nuclear targets, S ∝ 1/mX , kinematically suppressing the overall capture rate.

The number of dark matter particles present in the Sun as a function of time is given as follows:

Ṅ(t) =C�−A�N(t)2−E�N, (4.5)

where C� is the capture rate described above, A� is the dark matter’s annihilation cross section,
〈σv〉, divided by the effective volume that is occupied by the captured dark matter, and E� is
inverse time for a dark matter particle to escape the Sun by evaporation. The effective volume is
determined by matching the temperature of the Sun’s core to the gravitational potential energy of a
single dark matter particle:

Veff ' 5.7×1027 cm3
(

100GeV
mX

)3/2

. (4.6)

For dark matter particles heavier than a few GeV, evaporation is negligible. In this case, the
solution to Eq. 4.5 can be written as follows:

Γ(t) =
1
2

A�N(t)2 =
1
2

C� tanh2(t
√

C�A�), (4.7)

where Γ(t) is the present annihilation rate of dark matter particles as a function of the age of the
Sun. Notice that for t � (C�A�)−1/2 the annihilation rate becomes a constant, Γ =C�/2, having
reached an equilibrium between the rates of capture and annihilation.

In Fig. 11, we show constraints from the IceCube, Antares and Super-Kamiokande exper-
iments on dark matter particles annihilating in the core of the Sun [241]. Notice that these con-
straints are not on the dark matter’s annihilation cross section, but on its elastic scattering cross sec-
tion with nuclei. In fact, these constraints are derived under the assumption of capture-annihilation
equilibrium, Γ = C�/2, which one should expect to be realized for the range of elastic scatter-
ing cross sections shown so long as 〈σv〉 >∼ 10−27 cm3/s. Furthermore, the constraints shown
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are for the case of spin-dependent scattering with nuclei, as the constraints from direct detection
experiments on spin-independent scattering are very stringent, and rule out most models that neu-
trino telescopes would be sensitive to. From this figure, we see that the constraints from neutrino
telescopes can exceed those from direct detection experiments in cases in which the dark matter
annihilates to final states that produce large numbers of high-energy neutrinos, such as W+W− or
τ+τ−.

5. Constraints on Annihilating Dark Matter from the Cosmic Microwave
Background

Thus far in these lectures, I have focused on ways in which we could potentially observed the
annihilation products of dark matter directly. But it is also possible to place constraints on dark
matter by studying the impact of their annihilation products on the universe during various eras
of cosmic history. In particular, dark matter annihilation products could alter the light element
abundances that are produced during Big Bang Nucleosynthesis (BBN), or change the ionization
history of our universe during and after the formation of the cosmic microwave background (CMB).

Consider a thermal relic dark matter candidate. By the definition of what it means for a particle
to undergo freeze-out, an order one fraction of the total dark matter population underwent annihi-
lations in a Hubble time during this process. As the universe continued to expand, the annihilation
rate dropped rapidly. We can write the number of dark matter annihilations per comoving volume
per Hubble time as follows:

Nann =
1
2

ρ2
X〈σv〉Vc

m2
X H

, (5.1)

where Vc is the moving volume and H is expansion rate (making 1/H the Hubble time). Since
ρX ∝ a−3, Vc ∝ a3, and H ∝ g1/2

? a−2 (during radiation domination), we conclude that the fraction
of annihilations per Hubble time evolved as Nann ∝ g−1/2

? a−1 up until matter-radiation equality, and
as Nann ∝ g−1/2

? a−3/2 during matter domination.
For concreteness, consider a dark matter candidate with a mass of 100 GeV and that froze-out

when the temperature was TFO ' 100GeV/20 ' 5 GeV. From the scaling relationship described
above, we estimate that by the time that the universe has cooled to a temperature of 1 eV, on the or-
der of 0.1 eV per baryon was injected into the universe through dark matter annihilations per Hubble
time. This is enough energy to ionize up to ∼ (0.1eV)/(13.7eV) ∼ 10−3 of the hydrogen atoms,
substantially impacting the process of recombination, and well as the observed characteristics of
the CMB. In fact, measurements of the CMB allow us to place stringent and robust constraints on
thermal relic dark matter candidates, excluding those with velocity independent annihilation cross
sections with masses up to ∼ 10-30 GeV [252, 253, 254, 255, 256, 257].

In Fig. 12, we show the most recent constraints on annihilating dark matter from the Planck
Colaboration [5]. Although these constraints do not extend to masses as high as some of the
others discussed in these lectures, they are very robust and suffer from negligible astrophysical
or systematic uncertainties. Furthermore, whereas gamma-ray and cosmic-ray searches for dark
matter are generally less sensitive at masses below ∼ 10 GeV or so, CMB constraints rely only on
the total electromagnetic power injected and thus extend to masses well below the range shown
in Fig. 12. The CMB-based constraints are strongest for dark matter candidates which annihilate
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Figure 12: Constraints on the dark matter annihilation cross section (for a variety of annihilation channels)
from the Planck Collaboration’s measurements of the cosmic microwave background. From Ref. [5].

to electrons or photons, as these channels deposit the largest quantities directly into heating and
ionizing the intergalactic medium. Lastly, this figure also identifies regions of parameter space
in which dark matter could account for the Galactic Center gamma-ray excess, the cosmic-ray
antiproton excess, or cosmic-ray positron excess, as discussed earlier in these lectures.

6. Decaying Dark Matter

So far, these lectures have focused on searches for dark matter annihilation products. This
choice was motivated in part by the arguments presented in Sec. 1, which relate the abundance
of dark matter to the annihilation cross section of a thermal relic. But despite these arguments,
there are many examples of viable dark matter candidates which do not appreciably annihilate.
Alternatively, the particles that make up the dark matter could be unstable, and produce potentially
observable fluxes of decay products.

Observations of the the cosmic microwave background (CMB) and large scale structure indi-
cate that the abundance of dark matter has not appreciably changed over the course of the matter-
dominated era of our universe’s history. In fact, even if the decay products of dark matter are
invisible, such measurements can be used to constrain τX >∼ 2× 1019 s [7]. Much stronger con-
straints can be placed on dark matter candidates that decay into detectable particles.

Unlike in the case of dark matter annihilation, there is no clear benchmark target for the life-
time of a long-lived but unstable dark matter particle. That being, arguments have been made
which favor some ranges of lifetimes. For example, the lifetime of a particle that decays through
a dimension-5 operator suppressed by the GUT scale (MGUT ∼ 1016 GeV) can be estimated as
follows:

τ ∼ M2
GUT

m3
X
∼ 1017 s×

(
MeV
mDM

)3

. (6.1)

From this we learn that dimension-5 operators, even if suppressed by a very high-scale, tend to
cause dark matter particles to decay on timescales that are already ruled out by cosmological
considerations, unless very light. On the other hand, if we consider a decay that results from a
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dimension-6 operator, we arrive at the following estimate:

τ ∼ M4
GUT

m5
X
∼ 1025 s×

(
TeV
mDM

)3

. (6.2)

This lifetime is not excluded on cosmological grounds, but could potentially be tested through
searches for the dark matter’s decay products (for a review, see Ref. [258]). Searches for dark
matter decay products in the form of gamma-rays [259, 260, 44, 261, 262, 172, 263, 264, 265, 266,
267, 268], X-rays [269, 270, 271], neutrinos [172, 6] and cosmic rays [219] have each been carried
out.

To calculate the flux of gamma-rays from decaying dark matter, we modify Eq. 2.1, replacing
the annihilation rate per volume (〈σv〉ρX/2m2

X ) with the decay rate per volume (ρX/mX τX ), and
substituting the gamma-ray spectrum produced per annihilation with that produced per decay:

dNγ

dEγ

(Eγ ,∆Ω) =

(
dNγ

dEγ

)
1

4πτX mX

∫

∆Ω

∫

los
ρX(l,Ω)dldΩ. (6.3)

Because this flux is proportional to only one power of the dark matter density (as opposed to two
in the case of dark matter annihilation), the best strategy is generally to study large regions of the
sky, searching for decay products from throughout the halo of the Milky Way, and throughout the
integrated volume of the observable universe. Due to the universe’s opacity to gamma rays above
∼ 1 TeV, the constraints from Fermi on the dark matter’s lifetime are approximately flat from the
GeV scale to EeV masses and above, excluding decays to (non-neutrino) Standard Model particles
for τ <∼ 1028 s.

6.1 X-Ray Lines from Decaying Sterile Neutrinos

The origin of neutrino masses remains one of the most important outstanding puzzles in par-
ticle physics. Although the Standard Model does not accommodate masses for these particles,
natural extensions can easily generate small masses for these species through variations of the see-
saw mechanism [272, 273, 274, 275, 276]. Such scenarios predict the existence of sterile neutrinos,
which do not interact through the weak force. If the degree of mixing between the sterile and active
neutrinos is very small, the sterile neutrinos will not reach thermal equilibrium with the Standard
Model bath in the early universe. As pointed out by Dodelson and Widrow [13], however, even
a very small degree of mixing can generate a significant population of sterile neutrinos through
the collisions of active neutrinos with other Standard Model particles (see also Refs. [277, 278]).
Sterile neutrinos with masses in the range of∼ 1-100 keV have long been considered as potentially
viable candidates for dark matter (for a review, see Ref. [279]).

In recent years, this framework has become increasingly constrained. In particular, sterile
neutrinos can decay to a final state that includes a distinctive mono-energetic photon through dia-
grams of the kind shown in Fig. 13. With this signal in mind, searches for X-ray [269, 270, 271]
and gamma-ray [263] lines have resulted in strong upper limits on the lifetime of sterile neutri-
nos, which in turn constrains the mixing angle between the sterile and active species. When these
results are combined with observations associated with structure formation [280, 281], one finds
that sterile neutrinos within the context of the standard Dodelson-Widrow scenario are unable to
account for the entirety of the cosmological dark matter abundance.
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Figure 13: Feynman diagrams for the decay of a sterile neutrino to a photon and a neutrino.

In light of these constraints, a number of less minimal scenarios have been proposed in which
the production rate of sterile neutrinos is enhanced in the early universe, allowing for smaller
mixing angles and thus relaxing the constraints from astrophysical observations. Model-building
efforts in this direction have generally relied on either resonant enhancements or additional out-of-
equilibrium processes. The former can be realized with the inclusion of a non-negligible lepton
asymmetry in the early universe, which effectively modifies the matter potential of the Standard
Model neutrinos [14]. In this case, the successful predictions of Big Bang nucleosynthesis limit the
degree to which the mixing can be suppressed, and only a small window of parameter space remains
phenomenologically viable, corresponding to sterile neutrinos in the mass range of approximately
7–25 keV [271]. Alternatively, the second class of models explicitly incorporates new particle
species, such as additional scalars that decay directly into dark matter [282, 11, 283, 10, 284, 285,
286, 283, 287, 288, 289]. In these scenarios, the connection between the production and late-time
decays of sterile neutrinos is blurred, essentially at the cost of introducing additional degrees-of-
freedom that are not directly tied to sterile-active oscillations.

Interest in sterile neutrino dark matter has been bolstered in recent years by the reported de-
tection of a 3.5 keV X-ray line from a stacked collection of galaxy clusters using data from XMM-
Newton [290, 291]. More recently, the presence of a similar line has been detected from the center
of the Milky Way [292] and in deep-field observations [293]. The analysis of X-ray data from the
direction of the Draco dwarf galaxy as described in Ref. [294] appears to rule out the presence of
such a signal, while the authors of Ref. [295] claim to have detected a faint 3.5 keV line signal in the
same dataset. The lack of such a line feature in the emission from the Andromeda Galaxy [280],
a stacked sample of galaxies [296], and dwarf galaxies [297] has been used to establish strong
limits on dark matter related interpretations of this signal. While some groups have argued that
spectral lines from hot potassium or chlorine gas in the intercluster medium might be responsible
for this signal, this interpretation remains actively debated [298, 299, 300, 301]. For a review, see
Ref. [302].

Although a 7 keV decaying sterile neutrino is among the most well-motivated explanations
for the observed 3.5 keV line, the constraints mentioned in the above paragraph have cast some
doubt on this interpretation. With this in mind, a number of alternatives have been proposed. For
example, scenarios have been considered in which pairs of dark matter particles can scatter to excite
one (or both) into a slightly heavier state, which then produces a 3.5 keV photon in its subsequent
decay into the ground state [303, 304]. But whereas a decaying sterile neutrino would produce
a 3.5 keV signal in proportion to its density, such an “exciting dark matter” scenario leads to a
signal that scales with the square of the density, along with some dependence on the dark matter’s
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velocity distribution. This could potentially provide an explanation for why no 3.5 keV signal has
been observed from dwarf galaxies.

7. Summary

In these lectures, I have presented a overview of indirect searches for dark matter, describing
searches for gamma rays, cosmic rays and neutrinos from dark matter annihilations or decays, and
the impact of such particles on the cosmic microwave background. It should be noted that these
lectures are far from exhaustive, and there are many efforts to detect dark matter indirectly that I
have not discussed here. A few takeaways from these lectures are the following:

• The measured abundance of dark matter provides us with motivation to consider dark matter
candidates that annihilate with a cross section near the benchmark value of 〈σv〉 ' 2×10−26

cm3/s. Furthermore, we can restrict the mass of thermal relics to be heavier than a few MeV
(in order to satisfy constraints from Big Bang Nucleosynthesis) and lighter than 120 TeV (in
order to not violate partial wave unitarity).

• Measurements of the cosmic microwave background have been used to place constraints on
annihilating dark matter, excluding most candidates with the thermal relic benchmark cross
section for masses up to mX ' 10−30 GeV.

• Gamma-ray observations of dwarf galaxies and the Galactic Center extend these limits up
to mX ∼ 60− 140 GeV. If taken at face value, the cosmic-ray antiproton spectrum appears
to exclude such candidates for masses between mX ∼ 160− 500 GeV, although significant
systematic uncertainties apply to this channel. For the case of dark matter annihilations to
e+e−, the cosmic-ray positron spectrum also provides strong constraints.

• A number of excesses and anomalies have been reported which could be the result of dark
matter annihilations or decays. In particular, the Galactic Center gamma-ray excess and the
cosmic-ray antiproton excess each point toward dark matter annihilating with a cross section
near the benchmark value of 〈σv〉 ' 2× 10−26 cm3/s and with a mass in the approximate
range of ∼ 50-80 GeV (for the representative example of annihilations to bb̄).

• There are many viable models in which the dark matter annihilates with a cross section that
is significantly smaller that the thermal relic benchmark (as a consequence of p-wave an-
nihilations, coannihilations, non-standard cosmological histories, etc.). At present, indirect
searches for dark matter are not generally sensitive to such scenarios.

Looking forward, we expect indirect searches for dark matter to be bolstered by a range of new
experiments and observations. The CTA is an array of ground-based gamma-ray telescopes sched-
uled for construction between 2020 and 2025, offering unprecedented sensitivity to the very high-
energy gamma-ray sky [305, 306]. At lower gamma-ray energies are the proposed satellite-based
AMIGO and e-ASTROGAM telescopes, which are designed to be significantly more sensitive than
Fermi at energies below 1 GeV [307, 308, 309]. Searches for gamma rays from dark matter annihi-
lation in dwarf galaxies will be further enhanced by LSST, which is expected to discover many new
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dwarfs. There is much yet to be learned about dark matter from the measurements of AMS-02, in
particular in regards to their search for anti-deuterium and anti-Helium in the cosmic-ray spectrum.
I expect this to be a exciting topic in the years ahead. Lastly, I will also mention that plans are un-
derway to launch a satellite-based X-ray telescope with the spectral resolution required to strongly
constrain the origin of the 3.5 keV line [310] (a replacement for the Hitomi satellite, which was
lost in 2016).
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âĂIJCharacterizing the Population of Pulsars in the Galactic Bulge with the Fermi Large Area
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