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1. Introduction

The study of finite-density QCD aims at answering a series of fundamental questions in the
next few years. In particular, the existence and location of a critical point separating the crossover
at chemical potential µB = 0 [1] from a hypothetical first order phase transition, is one of the main
open questions in our field. Other topics which will be addressed are the location of the transition
line and the phases of QCD at high density. By systematically decreasing the collision energy,
heavy ion collisions produce the high density phases of matter in the laboratory. The RHIC facility
at BNL is particularly suited for this purpose: the second Beam Energy Scan is scheduled for 2019
and 2020. RHIC will run both in collider and fixed target modes, and will be able to reach high
values of the baryonic chemical potentials. The study of dense matter will not stop after RHIC:
NICA, CBM and JPARC will pursue the study of critical point, onset of deconfinement and dense
hadronic matter at least till 2025.

Such a rich experimental program needs the support of fundamental theory and phenomenol-
ogy. In this contribution I will focus on observables obtained from lattice QCD simulations, which
are so precise to be employed in a quantitative comparison to experiments. These include the
equation of state, which is needed as input of hydrodynamic codes which describe the evolution of
matter created in heavy-ion collisions (see e.g. [2] and references therein); the information on the
phase diagram and constraints on the critical point location; the fluctuations of conserved charges.
The latter can be measured in experiments and in principle they allow a direct comparison between
theory and heavy ion data, provided that non-thermal effects are understood and corrected for.

2. Low-temperature phase: the Hadron Resonance Gas model

In the low temperature phase, the results of lattice simulations for QCD thermodynamics are
generally well described by the Hadron Resonance Gas (HRG) model, which has its roots in the
theorem by Dashen, Ma and Bernstein [3]. This theorem allows one to calculate the microcanonical
partition function of an interacting system, in the thermodynamic limit V → ∞, assuming that it is
a gas of non-interacting free hadrons and resonances [4]. This model needs as an input the list of
all known baryons and mesons with their mass and quantum numbers. It was recently pointed out
that additional resonances are needed in order to improve the agreement between lattice QCD and
HRG model predictions [5, 6].

It is interesting to note that, setting µS = µQ = 0, the dependence of the baryonic pressure on
the baryonic chemical potential is extremely simple:

p
T 4 = ∑

i∈B

di

π2

(mi

T

)2 ∞

∑
N=1

(−1)N+1N−2K2(N
mi

T
)cosh[N

µB

T
] (2.1)

any baryon contribution to the pressure is given by a function of the baryon mass mi and de-
generacy di, times cosh[N µB

T ]. The latter is the same for all baryons. The Boltzmann approximation
corresponds to N = 1 in the above fugacity expansion. If we now include a finite µS and µQ, all
baryons with the same strangeness and electric charge content will have the same factor, which con-
tains the chemical potentials. This expansion can be used to separate the contribution of particles
according to their quantum numbers. This idea, first developed in [5], has led to the identification
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of the missing resonance states according to their flavor content in Ref. [6]. We will come back to
this point later, when discussing kaon fluctuations.

3. QCD equation of state at zero and finite µB

The equation of state of QCD with 2+1 flavors at µB = 0 is known for a few years. The WB
collaboration published continuum extrapolated results at the physical quark mass based on a tree-
level Symanzik improved gauge action with 2-step stout-link improved staggered fermions[7, 8, 9];
more recently, also the charm quark has been included in the system [10]. From this analysis, it
turns out that the charm quark is a relevant degree of freedom already at T ∼ 250 MeV, which
should be taken into account in hydrodynamic simulations of heavy ion collisions at the LHC
energies [11]. The hotQCD collaboration found similar results [12] using the highly improved
staggered quark (HISQ) action introduced in [13].
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Figure 1: Left: Continuum extrapolated results for trace anomaly, entropy density and pressure. The gray
points are from the HotQCD collaboration [12], while the colored ones are from the WB collaboration [9].
The figure also shows the Stefan-Boltzmann limit for the pressure and the scaled entropy; the curves at low
temperature correspond to the HRG model predictions. Right: the trace anomaly and pressure in the 2+1
and 2+1+1 flavor theories (from Ref. [10]).

The left panel of Fig. 1 shows the comparison between the hotQCD (gray) and WB (colored)
results for the trace anomaly, entropy density and pressure. The right panel is a comparison between
the trace anomaly and pressure for a system of 2+1 (red) and 2+1+1 (black) dynamical quark
flavors.

An important validation of the lattice QCD Equation of State has been obtained from a Bayesian
analysis [14]. In this framework, a large number of observables from RHIC and the LHC has been
compared to theoretical models, while varying the model parameters. The posterior distribution
over possible equations of states turned out to be consistent with results from lattice QCD. This
analysis has also been successfully applied to infer the behavior of other quantities, such as the
shear viscosity of the QGP at zero [15] and finite density [16].

Direct simulation of QCD thermodynamics at finite density is not possible, due to the sign
problem. Nevertheless, the need for finite-µB results to support the experimental program has
driven the thermal lattice QCD community to find alternative approaches. Several methods have
been proposed to calculate thermodynamics quantities at small chemical potential. These include
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Taylor expansion around µB = 0 [17, 18, 19, 20, 21], analytic continuation from imaginary µB

[22, 23, 23, 24, 25, 26, 27, 28, 29], reweighting of the generated configurations [30, 31, 32, 33],
use of the canonical ensemble [34, 35, 36] and density of state methods [37, 38]. Here I will focus
on the first two. The Taylor expansion for the pressure can be written as

p(T,µB)

T 4 =
p(T,0)

T 4 +
∞

∑
n=1

1
(2n)!

d2n(p/T 4)

d( µB
T )2n

∣∣∣∣
µB=0

(
µB

T

)2n
=

∞

∑
n=0

c2n(T )
(

µB

T

)2n
. (3.1)

The Taylor coefficients can be calculated in two ways, either by direct simulations, or simulations
at imaginary chemical potentials. Another important point is that, at finite µB, one has to make
choices also for the other two conserved charge chemical potentials, namely µS and µQ. The two
most popular choices are either µS = µQ = 0, or µS and µQ functions of T and µB, such that we
have 〈nS〉= 0 and 〈nQ〉= 0.4〈nB〉, to match the experimental situation in a heavy-ion collision.

More in detail, in the direct method a derivative of the partition function can be written in
terms of the action with all fermionic degrees of freedom already integrated out, Se f f , as follows:

∂i logZ =
1
Z

∫
DU∂ie−Seff = 〈Ai〉 . (3.2)

Here i indicates the variable of the derivative, the chemical potential µi in this case. Ai is the
first derivative of Seff without the factor e−Seff . Its ensemble average is calculated with the same
weight used for generating the configurations. In particular,

Ai =
1
4

trM−1
i (mi,µi)M′i(mi,µi) , (3.3)

where Mi(mi,µi) = mi +/D(µi) is the fermion operator with the bare mass mi; M′i(mi,µi) stands for
its first derivative with respect to µi. Higher order derivatives can be evaluated in a similar way.
The most expensive part of this method is the calculation of the trace in Eq. (3.3), which contains
disconnected contributions and appears in almost all susceptibilities.

After the early results for c2, c4 and c6 [18], the first continuum extrapolated results for c2

were published in Ref. [39]; in Ref. [40] c4 was shown, but only at finite lattice spacing. The
continuum limit for c6 was published for the first time in [41] in the case of strangeness neutrality,
and later in [42]. In the latter, both strangeness neutrality and µS = µQ = 0 results are presented.
A continuum estimate is performed, based on Nt = 6 and 8 lattices. In [43], a first determination
of c8, at two values of the temperature and Nt = 8 was presented. More recently, diagonal and
non-diagonal coefficients up to c8 have been calculated at Nt = 12 in Ref. [44] at µS = µQ = 0.

Figure 2 shows possible landscapes for simulations at imaginary µB and µS. The black dot
corresponds to direct simulation of all coefficients at µB = 0, as performed e.g. by the HotQCD
collaboration. The red squares correspond to finite µB and µS = 0, while the green triangles are
trajectories which ensure the strangeness-neutrality condition at T = 150 MeV (full) and T = 200
MeV (empty). The idea is to simulate lower order fluctuations at imaginary µB and use them in a
combined fit whose coefficients at µB = 0 are the higher order fluctuations. The formulas used for
the combined fit of χ1, ...χ4 are

χ
B
1 (µ̂B) = 2c2µ̂B +4c4µ̂

3
B +6c6µ̂

5
B +

4!
7!

c4ε1µ̂
7
B +

4!
9!

c4ε2µ̂
9
B

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
0
4

QCD at non-zero density Claudia Ratti

0

π/4

π/2

3π/4

π

0 π/4 π/2 3π/4 π

Im
 µ

S
tr

a
n
g
e

Im µBaryon

zero chemical potential
strangeness neutrality T=150 MeV

 T=200 MeV
imaginary strangeness

imaginary baryon density

Figure 2: Simulation landscape in the imaginary µB/T − µS/T plane of QCD. The QCD observables are
periodic in the imaginary chemical potentials, thus only the range (0...π)× (0...π) has to be explored.
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χ
B
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2
B + c4ε1µ̂

4
B +

4!
6!

c4ε2µ̂
6
B (3.4)

where ε1 and ε2 are drawn randomly from a normal distribution with mean -1.25 and variance 2.75.
The authors of Ref. [44] perform a correlated fit for the four measured observables, thus obtaining
the values of c2, c4 and c6 for each temperature, and the corresponding χB

2 , χB
4 and χB

6 (notice that
n!cn = χB

n ). These results are shown in Fig. 3, together with an estimate of χB
8 .

With the coefficients we have today we are able to cover the phase diagram for µB/T < 2.5.
I would like to mention two approaches, which allow us to bring the EoS closer to the experi-

mental needs. The first one uses the lattice EoS up to order (µB/T )4 and introduces a critical point
in the 3D Ising model universality class for QCD [45]. This family of equations of states will be
useful to test the effect of the critical point on hydrodynamics simulations, to be compared to the
experimental data from the second Beam Energy Scan. The other approach starts with a fugacity
expansion for the baryonic density, motivated by the HRG model formula (2.1), and postulates all
higher order coefficients to follow this behavior. This approach does not admit a critical point, but
allows to predict the behavior of all Taylor expansion coefficients [46].

4. QCD phase diagram

In 2006, lattice QCD simulations showed that the QCD transition at µB = 0 is an analytical
crossover [1]. The transition temperature is known since a few years [1, 47, 48, 49], with differ-
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Figure 3: Results for χB
2 , χB

4 , χB
6 and an estimate for χB

8 as functions of the temperature, obtained from the
single-temperature analysis. We plot χB

8 in green to point out that its determination is guided by a prior. The
red curve in each panel corresponds to the Hadron Resonance Gas (HRG) model result.

ent observables leading to slightly different results and defining the width of the crossover. The
HotQCD collaboration has recently updated their value for the transition temperature based on chi-
ral observables, considerably shrinking the error-bar [50]. The quoted value is Tc = 156.5± 1.5
MeV.

Following the transition temperature location at finite chemical potential, one can define the
curvature κ of the QCD phase diagram

Tc(µB)

Tc(µB = 0)
= 1−κ

(
µB

Tc(µB = 0)

)2

−λ

(
µB

Tc(µB = 0)

)4

. (4.1)

Several results for κ exist in the literature; they differ by approach and choices of strangeness and
electric charge chemical potentials. A compilation of results is shown in Fig. 4.

The Taylor expansion of thermodynamic observables will break down if there is a critical
point on the QCD phase diagram. The position of the critical point would then be identified with
the radius of convergence of the Taylor series, provided that there is no other singularity in the
imaginary µB plane, closer to µB = 0. The radius of convergence can be obtained from the ratio
of subsequent coefficients in the Taylor expansion e.g. of the pressure or its derivatives. For the
Taylor expansion of χB

2 , it is defined as follows

rχ

2n =

∣∣∣∣2n(2n−1)χB
2n

χB
2n+2

∣∣∣∣1/2

. (4.2)
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Figure 4: (From Ref. [51]) Compilation of results for the curvature of the phase diagram of QCD, obtained
with different methods, different actions and different conditions on µS and µQ [21, 52, 53, 54, 55, 56, 57,
58, 59].

Strictly speaking, rχ

2n converges for n→ ∞. The authors of Ref. [60] re-did the analysis on the
Nt = 4 lattices with unimproved action by Fodor and Katz [31] with statistics increased by a factor
50, and found the same critical point previously quoted. They found that the radius of convergence
in that case seems to converge to the right value with just a few coefficients, probably due to the fact
that the critical point is relatively close to µB = 0. For QCD on finer lattices, the most up-to-date
estimate for the radius of convergence is from Refs. [42] and [43]. In the range 135 MeV≤ T ≤
155 MeV a critical point at µB/T < 2 is highly disfavored.

5. Fluctuations of conserved charges

Fluctuations of conserved charges allow us to characterize the chemical freeze-out, the mo-
ment in the evolution of a heavy ion collision at which all inelastic collisions between hadrons
cease: the chemical composition of the system is fixed at this point. The cumulants of the experi-
mental event-by-event distribution of a conserved charge are fluctuation observables which we can
calculate on the lattice, and which are defined as

χ
BSQ
lmn =

∂ l+m+n p/T 4

∂ (µB/T )l∂ (µS/T )m∂ (µQ/T )n (5.1)

These quantities are fixed at the chemical freeze-out; the lattice curves are functions of the temper-
ature, chemical potential and volume. The volume factor cancels out by taking ratios:

M/σ
2 = χ1/χ2 Sσ = χ3/χ2 (5.2)

Sσ
3/M = χ3/χ1 κσ

2 = χ4/χ2, (5.3)
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where M, σ , S, κ are the mean, variance, skewness and kurtosis of the experimental net-charge
distribution, respectively. By comparing the experimental value to the lattice curves we can obtain
the temperature and chemical potential at the chemical freeze-out [61, 62, 63].

The STAR collaboration published results for the net-proton [64] and net-charge [65] fluc-
tuations at different collision energies. Possible experimental sources of non-thermal fluctuations
are corrected for in the STAR data analysis: the centrality-bin-width correction method minimizes
effects due to volume variation because of finite centrality bin width (such effects have been stud-
ied e.g. in [66, 67, 68]); the moments are corrected for the finite reconstruction efficiency based
on binomial probability distribution [69]. A pT -dependent efficiency correction method [70] has
been recently implemented; multiplicity-dependent and non-binomial efficiency corrections have
also been studied [71], as well as the effect of baryon number conservation on the cumulants of
net-proton distribution [72].

Final-state interactions in the hadronic phase and non-equilibrium effects might become rel-
evant and affect fluctuations [73, 74, 75, 76, 77, 78, 79]; a fundamental check in favor of the
equilibrium scenario is e.g. the consistency between the freeze-out parameters yielded by different
quantum numbers, like electric charge and baryon number.

One more caveat is in order, since experimentally only the net-proton multiplicity distribution
is measured, as opposed to the lattice net-baryon number fluctuations. It was shown that, once
the effects of resonance feed-down and isospin randomization are taken into account [80, 81], the
net-proton and net-baryon number fluctuations are numerically very similar, at least in the case of
low-order fluctuations [82].

In 2014 it was shown that two independent analyses based on fluctuations of baryon number
and electric charge give consistent results for the freeze-out parameters [83]. More recently, a com-
bined fit of the ratio of first-to-second order fluctuations for these two charges has been performed:
since their experimental and theoretical uncertainties are smaller, the freeze-out temperature and
chemical potential can be determined with a higher precision. The results of this analysis are shown
in the left panel of Fig. 5. The colored lines are the trajectories in the (T, µB) plane which satisfy
the experimental value: the points where they cross yield the desired freeze-out T and µB. Also
shown in the figure are the isentropic expansion trajectories that the system in a heavy-ion collision
would follow in the case of strictly zero viscosity; the red shaded area is the crossover transition
region in the QCD phase diagram [56].

Experimentally, it is very difficult to measure strangeness fluctuations. The STAR collabora-
tion has recently presented results for net-kaon fluctuations [88]. On the lattice it is possible to
calculate fluctuations of conserved charges: the issue of isolating a single particle contribution is
not trivial. For example, as shown in Eq. (2.1), in the hadronic phase it is possible to separate the
contribution to the pressure of particles according to their quantum numbers: non- strange mesons,
non-strange baryons, mesons with strangeness 1, baryons with strangeness 1, 2, and 3. Following
this idea, and taking only the derivatives of the contribution of mesons with strangeness one, one
can obtain the fluctuations of mesons with strangeness one. In a heavy ion collision there are two
sources of mesons: the primordial ones, which are formed at hadronization, and the ones coming
from resonance decays. The HRG model can provide both. In Ref [89] χ2/χ1 for kaons has been
calculated in the HRG model in two ways, just by means of the Boltzmann approximation using the
idea illustrated above, and by calculating the full contribution including primordial kaons and de-
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Figure 5: Left: Preliminary results of the WB collaboration [84, 85]. The colored lines are the contours at
constant mean/variance ratios of the net electric charge from lattice simulations. The contours that corre-
spond to STAR data intersect in the freeze-out points of Ref. [86]. The red band is the QCD phase diagram
from Ref. [56]. Also shown are the isentropic contours that match the chemical freeze-out data. Right:
Freeze-out parameters across the highest five energies from the Beam Energy Scan. The red points were
obtained from the combined fit of χ

p
1 /χ

p
2 and χ

Q
1 /χ

Q
2 [86], while the gray bands are obtained from the fit

of χK
1 /χK

2 in this work. Also shown are the freeze-out parameters obtained by the STAR collaboration at√
s= 39 GeV [87] from thermal fits to all measured ground-state yields (orange triangle) and only to protons,

pions and kaons (blue x-shaped symbol).

cays. Since the two curves are very close to each other for all values of T and µB, it was concluded
that it is possible to isolate the net-kaon χ2/χ1 on the lattice. It will be interesting to see whether
the lattice QCD results for this observables confirm the HRG model analysis of kaons fluctuations,
which led to a higher freeze-out temperature for kaons compared to the light particles [90]. The
results of this analysis are shown in the right panel of Fig. 5.

Fluctuations can be used to study criticality, as they are expected to diverge with powers of
the correlation length near the critical point [19, 91, 92]. Besides, fourth-order fluctuations are
expected to be non-monotonic near the critical point [93, 94].

Recent results by the HotQCD collaboration showed the baryon number variance and the dis-
connected chiral susceptibility, extrapolated to finite µB along the crossover line. Both are expected
to diverge at the critical point, but none of them shows any signs of criticality up to µB = 250 MeV
[95].

As for the higher order fluctuations, χ3/χ1 and χ4/χ2 can be expanded in Taylor series in
powers of µB/T . The HotQCD collaboration pointed out that the Taylor expansion coefficients for
χ4/χ2 is three times larger than the one for χ3/χ1, a trend which seems to be confirmed by the
experimental data. However, recently it was pointed out in Ref. [96] that it is possible to explain
the same trend in the data in terms of baryon number conservation and volume fluctuation effects.
Results from the WB collaboration for χ3/χ1 and χ4/χ2 are consistent with these findings [44].
The extrapolation of these quantities to finite µB is shown in the two panels of Fig. 6.
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Figure 6: SBσ3
B/MB (left panel) and κBσ2

B (right panel) extrapolated to finite chemical potential. The left
panel is extrapolated up to O(µ̂2

B). In the right panel, the darker bands correspond to the extrapolation up to
O(µ̂2

B), whereas the lighter bands also include the O(µ̂4
B) term.

6. Conclusions

The forthcoming experimental program, dedicated to the study of finite-density QCD, needs
the theoretical support from lattice QCD simulations.This contribution collects an extensive com-
pilation of results on equation of state, phase diagram and fluctuations of conserved charges. So
far we have no indication of a critical point from lattice QCD. This is a very exciting time for the
study of strongly interacting matter at finite density, and hopefully the joint effort of theory and
experiment can lead to a map of the whole phase diagram of QCD relatively soon.
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