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1. Introduction

On April 26, 2018, the Belle II detector observed the first collision of an electron-positron pair
accelerated by the SuperKEKB accelerator. This is the event that opens a new era of heavy flavor
physics. The SuperKEKB is designed to deliver 50 times more luminosity than the previous KEKB
accelerator did. At the time of the conference, the Phase 2 operation of SuperKEKB, which is the
run with Belle II but without its inner-most vertex detectors, had just been finished and the machine
is scheduled to restart in March 2019 with fully equipped Belle II. The plan then is to accumulate
50 ab−1 within 5–6 years of running.

In B meson decays, there are already several hints of new physics. A well-known example is
the B→D(∗)τν decay branching fractions, which show an enhancement compared to the Standard
Model expectation [1, 2]. Because of τ lepton mass, the form factor uncertainty does not com-
pletely cancel even in the ratio between the branching fractions for B→ D(∗)τν and B→ D(∗)µν ,
and the lattice calculations by Fermilab/MILC [3] and HPQCD [4] have been used to predict the
Standard Model value. The experimental data show a tension of about 3.8σ .

For the rare decays B→ K(∗)`+`−, some hints of new physics have been found in the lepton
flavor universality test, R(K(∗)) = Γ(B̄→ K̄(∗)µ+µ−)/Γ(B̄→ K̄(∗)e+e−) (the most precise LHCb
observations to date are [5, 6]; see also the references therein) as well as an angular asymmetry P′5
of B→ K∗µ+µ− (results from LHCb [7] and Belle [8], CMS [9] and ATLAS [10]).

A more relevant quantity to the lattice calculation is the branching fraction of the B→ K`+`−

decay mode. The differential decay rate is estimated using a lattice calculation and other con-
straints. The experimental data by CDF, Belle, BaBar and LHCb look consistently lower as shown
in Figure 6 of [11]. This comparison is made away from the region of charmonium resonances
(J/ψ and ψ ′), since there are huge contributions from B→ ψ(′)K→ `+`−K due to a Cabbibo al-
lowed process b→ cc̄s. Quantitative estimate of such long-distance contribution is still missing,
and a separation of short-distance physics (new physics) and long-distance physics (QCD) remains
a difficult problem.

The challenges for lattice QCD in the context of heavy flavor physics are twofold. One is the
precision frontier. For the simple quantities like decay constants and semileptonic form factors, one
wants to achieve the precision as good as that the corresponding experiments provide. The other is
the study to understand unknowns, which includes the long-distance effect as well as the puzzles
between the inclusive and exclusive determination of |Vcb| and |Vub|. For such quantities, the way
to proceed might not be unique, and even a crude calculation could be helpful.

In this talk I describe my (sketchy) understanding of the status of these fronts. Section 2
summarizes the status of the precision frontier. I take the most recent calculation of the B meson
decay constant as an example in order to consider about what has been and what will be the main
challenges. I then move to the discussion of the exclusive determination of |Vcb| in Section 3. I
focus on this quantity because there was a significant progress and associated confusions in the last
couple of years. Section 4 is devoted to more complicated quantities, such as the inclusive B meson
decay calculation and the long-distance effect in B→ K`+`−.

I have to mention that this is not a comprehensive review. I am not going to provide averages of
lattice calculations. For the averages, the Flavour Lattice Averaging Group (FLAG) reviews most
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recent calculations and provide up-to-date averages every 2–3 years. The last edition (FLAG3) was
published in 2016 [12] and the next edition (FLAG4) is scheduled to appear in early 2019.

2. Precision frontier

The biggest news in the precision frontier in the last couple years came from the Fermi-
lab/MILC collaboration, which reported a calculation of the B meson decay constant at the level of
precision better than 1% for the first time [13]. The result is fB = 189.4 ± 1.4 MeV, which shows
a significant improvement compared to the previous average by FLAG [12], 192.0 ± 4.3 MeV for
N f = 2+1 or 186 ± 4 MeV for N f = 2+1+1 (based on the calculations of Fermilab/MILC [14],
RBC [15, 16], and HPQCD [17, 18]).

2.1 Discretization effect for heavy

Achieving such precision is highly non-trivial, because the heavy quarks are much harder to
treat on the lattice due to their short Compton wavelength. This is indeed the reason of long history
of works to develop and test effective theories for heavy quarks on the lattice. The solution adopted
in this work, on the other hand, is to use the Highly Improved Staggered Quark (HISQ) action [19]
for both heavy and light quarks, and to extend the simulations on the lattices with small lattice
spacings down to a = 0.042 fm at the physical pion mass. The computational effort spent for this
work, 70 TFlops×yr for the ensemble generation plus another 70 TFlops×yr for the measurements
(both in the unit of sustained TFlops), was of course a key for the success, but does not explain
everything because the highest lattice cutoff is still around 5 GeV and not enough to satisfy the
condition amb� 1 for the physical b quark mass mb.

The discretization effect for heavy quark may be estimated according to the so-called Fermilab
interpretation [20], that applies the Heavy Quark Effective Theory (HQET) for the lattice regular-
ization with finite amb. The leading discretization effect for heavy HISQ quarks is then estimated
to be of O(αsa2m2). Numerically, it is not small for the physical b quark mass. Even for a fictitious
“b” quark that has an intermediate mass of 3 GeV, it gives a rough estimate of about 7%. (Other
parameters are taken αs ∼ 0.2 and a−1 ' 5 GeV corresponding to the Fermilab/MILC calculation.)

In order to achieve the sub-% precision, therefore, the discretization error has to be eliminated
by a continuum extrapolation. In the calculation of the Fermilab/MILC collaboration, this is done
with a number of lattice data calculated at various “b” quark masses between the charm quark mass
and the physical b quark mass. The lattice spacing covers a wide range from 0.15 fm down to
0.03 fm, which enable them to fit the data globally allowing the terms of 1/mk (k≥ 0) and αs(ma)n

(n≥ 2) to account for the physical 1/m dependence as well as the discretization effects. The heavy
quark mass one can reach at each lattice spacing without too large discretization effect and can be
used in the analysis is limited by a condition that ma is below some value. The Fermilab/MILC
collaboration chose ma < 0.9.

Fig. 1 demonstrates this global fit. One can see that the results at growing lattice cutoffs
tend to follow a single curve more closely, and they finally show the envelope to represent the
continuum limit. The cyan curve is their estimate of the continuum limit obtained by the global fit.
A surprising observation is that the deviation from this continuum limit is much smaller than what
we estimate using the effective theory. For instance, for our fictitious b quark at “mb” = 3 GeV,
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Figure 1: Heavy quark and continuum extrapolation of heavy meson decay constants ΦH ≡ fH
√

mH . The
plot is from Fermilab/MILC [13]. Two bunches of curves represent those for Bs (above) and Bu (below). For
each case, the results at various heavy quark masses obtained at three different lattice spacings are plotted.
The continuum limit obtained by a global fit is shown by cyan curves.

the meson mass is roughly in the middle between the physics MD and MB. The deviation from the
continuum limit (cyan) seems to be much smaller than the estimated 7% at a ' 0.042 fm (blue)
and is almost invisible in the scale of Fig. 1. (The size of the discretization effect is actually about
3% or less even including the coarser lattices of a' 0.09 fm.)

This small discretization effect may be partly due to the fact that the renormalization constant
of the axial-vector current is automatically determined when one uses the same relativistic quark
action for both heavy and light. The bulk of the discretization effect of O(αsa2m2) may be absorbed
in this method. This might be a lucky situation that happens only for the decay constant and might
not be the case for other quantities.

I also mention that this strategy to employ the HISQ heavy quark even for “bottom” and to
extrapolate to the physical point was originated from the pioneering work by the HPQCD collab-
oration [21]. The Fermilab/MILC collaboration extended this program to smaller lattice spacings
and to higher statistics, and finally achieved the precision calculation.

There are various strategies for the treatment of heavy quarks on the lattice. For the effective
theory approaches, such as the NRQCD action [22], the Fermilab action [20] and its variants,
one has to match the action and operators to reproduce the relativistic continuum fermion. The
matching is usually carried out using perturbation theory, and the error of O(α2

s ) remains when the
one-loop corrections are included. (Note also that this can be improved by the so-called mostly
non-perturbative matching, which means that the currents made of degenerate quarks are non-
perturbatively renormalized and possible deviations for non-degenerate quarks are estimated by
perturbation theory.) The method to perform the matching completely non-perturbatively has been
formulated by the ALPHA collaboration [23, 24, 25, 26]. It requires dedicated simulations with
various volumes and lattice spacings, and takes time to carry out. Finally, the relativistic approach
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Figure 2: D meson (left) and B meson (right) correlator divided by their ground-state exponential function
e−M0t . The plots are from Fermilab/MILC [13]. They are obtained on a fine (a ' 0.042 fm) lattice and at
physical pion mass. Circles and squares are with different sources, and the zigzag structure is due to the
staggered fermion.

has become more common as the computational power increases. While one needs small lattice
spacings in order to suppress discretization effects, the non-perturbative matching of the operators
is much simpler than the effective theory approaches. Such a brute-force approach could be a
simple solution in some cases, and the most recent Fermilab/MILC calculation of fB is a prominent
example.

2.2 Growing noise and excited-state contamination

The statistical error poses more problems for heavy quarks. According to Lepage’s analysis
[27], which was numerically confirmed in [28], one can predict how rapidly the statistical noise
grows in the correlation functions. For the heavy-light meson correlator CHL(t), the statistical
noise δCHL(t) grows as

δCHL(t)
CHL(t)

∝ exp
[(

mB−
mηb +mπ

2

)
t
]
. (2.1)

The noise “doubling time”1 mB− (mηb +mπ)/2 is determined by the physical mass spectrum and
there is nothing to do with the lattice details. Numerically, it is about 0.4 fm for the B meson, which
is much worse compared to the D meson (0.65 fm). The growing noise, especially for the B meson,
can be clearly seen in the data by Fermilab/MILC [13], which is reproduced in Figure 2.

As a result, one is forced to fit the correlator before the ground state dominates, in order not
to lose the signal at all. Such a fit including the excited-state contamination modeled by multiple
exponential functions is a numerically difficult problem. In the fB calculation by Fermilab/MILC
[13], the multi-exponential fit is applied with five distinct states included. The fit range shown
by vertical lines in the plots; the maximal time separation is about 1.6 fm for the B meson (right)
where the plateau is not yet reached. Two of the states included are opposite-parity states due to

1Actually the time that the noise becomes ×2.7.
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the use of the staggered fermion, and the other two are the excited states of the target B meson.
Assuming the physical mass spectrum, the candidates for these low-lying excited states are the
two-body B∗π states with finite relative momenta between B∗ and π . On a large lattice of size L'
6 fm, as used by the Fermilab/MILC calculation, they start from 300 MeV above the ground state
and their spectrum is nearly continuum like, i.e. a dense distribution of different energy eigenstates
are expected. The excited-state energy obtained by the fit is consistent with this band of states, but
they are not separately identified. The extraction of the ground state would be stable even though
the excited states are not precisely accounted for, but the crucial question is whether the statistical
error thus estimated is valid especially when the plateau is not cleanly identifiable. Such careful
study would become more relevant for many quantities as the numerical precision improves.

The lattice simulation at the physical pion mass is a big challenge for us if not a nightmare.
First of all, with the small pion mass the signal-to-noise ratio becomes worse for the reason just
described, and one has to fit the lattice correlators before plateau is reached. This itself is fine, but
the situation gets even worse because the excited-state energy is made lower as mπ and the isolation
of the the ground state needs larger time separations. These excited states become dense when the
lattice volume is large as required to keep the finite volume effect under control. It means that the
multi-exponential function is no longer a valid description of the correlator.

This problem had already become manifest for baryons. The analysis of the noise growth rate
implies that the “doubling time” is about 0.27 fm for nucleon, even smaller than for the B meson.
In a recent computation of nucleon correlator at the physical point, i.e. the one by the PNDME
collaboration [29], no clear plateau is visible before signal dies at around the time separation of
1.5 fm. The authors attempted multi-exponential fits, and the resulting excited-state energy was
not consistent with what one expects from the Nπ continuum states. An interpretation might be
that the interpolating operator used in this work has small overlap with such two-body states, and
even higher-energy states show up in the data. But, then, one should ask if there is any bias due
to the unseen continuum-like states. Certainly, a better understanding of the correlator at short
distances is desired.

Another important warning may be found in the computation of the axial charge of nucleon.
Bär gave a plenary talk at Lattice 2017 [30] concerning a possible bias due to the correlator fit at too
short source-sink separations (see also [31, 32] and a talk at this conference [33]). Within chiral
perturbation theory (ChPT) one can compute the contribution of the Nπ states to the correlator
relevant to the calculation of the nucleon axial charge gA. With finite source-sink separations, but
larger than 2 fm, he estimated a bias that overestimates gA by about 2–7%. Many of the lattice
computations, on the other hand, gave results lower than the experimental value by about 3–10%.
A potentially serious problem here is that the source-sink separation adopted in these calculation
is too small, . 1.5 fm, to safely apply ChPT. (The separation between the source (or sink) and the
current is less than half of this.) Since there is no a priori criterion for the necessary time separation,
the nucleon gA would provide an important benchmark problem for lattice computation, for which
the consistency with a theoretical estimate has not been established.

A similar, or even tougher, problem is the calculation of heavy baryon decay form factors, such
as those of Λb→ p`ν . The noise doubling time for Λb is about 0.25 fm, which is even shorter than
that for nucleon. Because of such a bad signal-to-noise, the authors of [34] had to fit the correlators
at the source-sink separations between 0.5 and 1 fm, much smaller than the separation typically
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adopted in the B→ π`ν form factor calculations. They numerically confirmed the stability of the
ground-state signal within the existing data, but more stringent consistency checks including those
of excited-state energy would be highly desired since the fit range does not even touch the plateau
region.

2.3 Heavy-to-light decays

Semileptonic decays of heavy mesons to light mesons, such as B→ π`ν and Bs→ K`ν , are
challenging quantities for the lattice calculation. It is not only due to the heavy initial B meson
but the final state (π or K for these examples) can have relatively large momenta. With a finite
momentum, the noise growth rate of pion correlator, for instance, is given as δCπ(t,p)/Cπ(t,p) ∝

exp[(Eπ(p)−mπ)t], and it sets the limit on the value of the momentum transfer q2 one can reach.
The maximum momentum of the final state pion is typically around 600–800 MeV/c, which is
much lower than the kinematically allowed maximum ∼ 2.6 GeV/c. Previous calculations, such
as those by RBC/UKQCD [35], Fermilab/MILC [36], ALPHA [37], actually observed the growing
noise for larger momenta. These groups therefore restricted themselves for small recoil momenta
(and thus large q2) and fit the plateau. The possibility of fitting including much shorter time-
separations even without finding plateaus has not been fully explored.

At this conference, there have been presentations on the heavy-to-light form factor calcula-
tions by Fermilab/MILC (Gelzer et al. [38], see also [39, 40] for preliminary results at Lattice
2017), RBC/UKQCD (Witzel et al. [41]), JLQCD (Colquhoun et al. [42], see also [43]), HPQCD
(Bouchard et al. [44], see also [45] for a full paper), as well as ETM (Riggio et al. [46], see also
[47] for a full paper).

To conclude this section, I emphasize that precise calculation has become realistic even for
b quark. An important factor for this development is the use of the HISQ action combined with
a large amount of computer resources. Results with other lattice formulations are highly desired
to cross-check the results. Extension of the calculation to more complicated problems, such as
the heavy-to-light form factors, is more challenging mainly due to the noise problem. The “fit-
before-plateau” strategy will be used more commonly for these quantities, and we need thorough
understanding of the excited-state contamination especially those from the continuum, such as
B(∗)π , states.

3. A |Vcb| story

One of the key CKM elements, |Vcb|, can either be determined using the exclusive decay
processes B→ D(∗)`ν or the inclusive decay rate of B→ Xc`ν . The exclusive determination relies
on the constraints given by heavy quark symmetry and lattice calculations.

In the limit of infinitely heavy quarks, mb, mc → ∞, the heavy-to-heavy meson transition
form factors, for both B→ D`ν and B→ D∗`ν , can be written in terms of an universal function
ξ (w), called the Isgur-Wise function [48, 49]. This is a remarkable result of the heavy quark
symmetry. Here, the argument w is an inner product of initial and final meson velocities, w≡ v ·v′.
In the zero-recoil limit, w = 1, the process is nothing but an insertion of a temporal vector current
between static mesons, and the form factor is normalized to one due to vector current conservation:
ξ (1) = 1. The correction to the mb,c→ ∞ limit starts from O(1/m2), i.e. no O(1/m) corrections
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[50], in the zero-recoil limit, so that the size of the correction is suppressed by a factor of Λ̄2/m2
c

with Λ̄ a typical QCD scale and thus expected to be about 10% or less. The standard strategy
for a precise determination of |Vcb| is therefore to measure |Vcb|F (w) in the experiments (F (w)
stands for the form factor at finite mb,c). One extrapolates the data to the w→ 1 limit and inputs
an theoretical estimate for F (1) to extract |Vcb|. In this way one can avoid hadronic uncertainty as
much as possible.

The best theoretical estimate for F (1) now comes from lattice calculation, and the lattice
calculation itself gets benefits from the heavy quark symmetry. For instance, a double ratio of the
zero-recoil form factors

|h+(1)|2 =
〈D|c̄γ0b|B̄〉〈B̄|b̄γ0c|D〉
〈D|c̄γ0c|D〉〈B̄|b̄γ0b|B̄〉 (3.1)

becomes unity in the heavy quark limit. The left-hand side doesn’t have a denominator because
the current conservation of the flavor-conserving vector current normalizes the corresponding form
factor to 1. Away from the heavy quark limit, a symmetry under the exchange between b and c
forbids the correction of O(1/m). By designing the lattice calculation such that this symmetry is
manifest, one essentially calculates the deviation from the heavy quark limit, |h+(1)|2− 1, which
is of O(1/m2

b,c) [51, 52].
Unquenched lattice results for the zero-recoil form factor have so far been obtained by Fer-

milab/MILC (for B→ D`ν [3] and for B→ D∗`ν [53]) and HPQCD (for B→ D`ν [4] and for
B→ D∗`ν [54]). Combined with the experimental averages provided by the HFLAV group [1],
the results for |Vcb| are 0.0398(10)(14) from B→ D`ν and 0.0391(5)(5) from B→ D∗`ν . It is to
be compared with another determination, 0.0422(8), from the inclusive B meson decays [1]. If we
take them at their face values, there is a tension of about 3σ between the exclusive and inclusive
determinations. This is a long-standing puzzle in the determination of |Vcb| that prevents us from
performing more precise tests of the CKM unitarity.

More recently, the situation was changed by a new analysis of B→ D∗`ν by Belle [55]. They
created an unfolded data of the differential decay rate available in the form that theorists can at-
tempt their own analysis. Several theorists have actually studied the fit of the experimental data
of |Vcb|2F 2(w) using various ansatz for the functional form of F (w), and found that the results
depend on the details of the fit function [56, 57, 58].

The commonly used fit ansatz in the experimental analyses had been that of Caprini, Lellouch,
Neubert (CLN) [59], which was developed from a more general formulation by Boyd, Grinstein,
Lebed (BGL) [60]. The both use the idea of the dispersive bound [61, 62], which relates two-
point functions of the form 〈Jc̄bJb̄c〉 to a sum of the matrix elements |〈0|Jc̄b|B̄(∗)

i D(∗)
j 〉|2. Here,

the subscripts i and j denote possible states allowed by symmetries. Since the matrix elements
are written in terms of the corresponding form factors, this relation gives certain constraints on
the form factors integrated over their kinematical variables. The constraints are used such that
the functional form of F (w), for instance, is well approximated by a polynomial of a variable
z = (

√
1+w−

√
2)/(
√

1+w +
√

2) truncated at some order. On top of that, the CLN ansatz
incorporates some estimates of the 1/m corrections from heavy quark effective theory, and thus
puts tighter constraints than the BGL does. For instance, the form of hA1(w), a dominant part
of F (w), is parametrized by only two parameters up to O(z3), i.e. the slope of F (w) at w = 1
determines its curvature too.
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Figure 3: R1(w)≡ hV (w)/hA1(w) extracted from the BGL and CLN fits [58] of the Belle data (bands). The
lattice results by Kaneko et al. [63] are shown by the points (and also magnified in the inset). A plot from
[63].

The new observation by [56, 57, 58] is that the BGL fit yields a higher value of |Vcb|, which
is consistent with the inclusive determination. Since the BGL ansatz is more general, and thus
more model-independent, one might argue that this is the solution of the |Vcb| puzzle. The situation
is, however, not that simple. The same BGL fit also gives results on the parameters for which
an estimate from HQET at O(1/m) is available, and the results indicate unnaturally large O(1/m)

corrections. An example is shown in Figure 3, where R1(w) ≡ hV (w)/hA1(w) is plotted. (hV (w)
and hA1(w) are form factors to represent some kinematical structures of B→ D∗`ν .) This ratio
becomes unity in the heavy quark limit, and the leading correction is expected to be of O(Λ̄/mc),
while the plot shows that the BGL fit of the Belle data [58] leads to an O(1) deviation from 1.

More extensive test of the heavy quark symmetry relations among form factors is necessary
on both experiment and lattice, which was also emphasized by [64]. One example is R1(w) shown
in Figure 3, where the results of lattice calculation by Kaneko et al. [63] are plotted together with
the BGL and CLN fits of [58]. It is clear that the lattice results prefer the CLN fit (See also [64]),
and the latest BGL fits that yield the higher value of |Vcb| are not totally satisfactory.

To summarize, the situation of the |Vcb| determination is yet unclear. The lattice calculation is
the main theoretical source of information to resolve the puzzle. In order to fully understand the
situation, the lattice inputs for the form factor shape, not just the value in the zero-recoil limit, will
play a crucial role. Several lattice projects are working toward this direction. At this conference,
the status is reported by RBC/UKQCD (Witzel et al. [41]), JLQCD (Kaneko et al. [63]), HPQCD
(McLean et al. [65]), Fermilab/MILC (Vaquero et al. [66], see also [67]), as well as the Seoul
group (Park et al. [68]).
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4. More challenges

4.1 Short-distance physics

So far, most lattice calculations have focused on the properties of ground-state hadrons, such
as their masses or form factors. In the real world, there are far more states of excited hadrons
or scattering hadrons. In the perturbative analysis of QCD, one considers high-energy or short-
distance quark (and gluon) interactions and relates them to the experimental data after summing
over all possible hadronic final states. The best-known example is the R-ratio, i.e. the ratio of
the e+e−→ qq̄ cross section to e+e−→ µ+µ−. Using the analyticity of the vacuum polarization
function Π(q2), defined through (qµqν − q2gµν)Π(q2) = i

∫
d4xeiqx〈0|T [ jµ(x) jν(0)]|0〉, one can

write down the equality

1
n!

(
∂

∂q2

)n

Π(q2)
∣∣
q2=0 =

1
π

∫
∞

smin

ds
ImΠ(s)

sn+1 . (4.1)

Here, let us restrict ourselves to the cc̄ final states. The right-hand side contains the imaginary part
ImΠ(s), which is related to the sum over all possible final states of e+e−→ cc̄. The left-hand side
is the vacuum polarization function at q2 = 0, far below the singularities — poles and cuts. Since
Π(q2 = 0) is a short-distance quantity characterized by the length scale of 1/mc, one can use the
perturbative expansion to evaluate. This is the principle of the quarkonium sum rules, a version of
the QCD sum rule [69, 70] applied for quarkonium. The method has been used to determine the
charm quark mass, for instance, using the experimental data for e+e− → cc̄ (see [71, 72] for the
most recent works).

The same perturbative expansion of the charmonium vacuum polarization function may be
compared with the lattice data. Namely, one can replace the experimental data by the lattice results
obtained directly at q2 = 0. The calculation is free from ultraviolet divergences when n > 1. The
derivatives in terms of q2 in (4.1) are transformed to the temporal moments of the charmonium
correlator on the lattice, ∑t t2nG(t), which is straightforward to construct from the lattice data of
the correlator G(t). Since G(t) decays exponentially in Euclidean time t by the charmonium mass,
the sum is saturated by the short-distance region t ∼ n/mc.

The pioneering work of the HPQCD collaboration [73, 74, 75] opened a new application of
lattice QCD for short-distance quantities. Fundamental parameters in QCD, αs(µ) and mc(µ),
defined in the MS scheme were extracted directly from the equality between the lattice data and
perturbative expansion for dnΠ(q2)/dq2n. (The same method has also been utilized more recently
by [76, 77].)

It also implies that one can compare the lattice data obtained in the short-distance region
with the experimental data, without recourse to the perturbative expansion. Such a test has been
performed and an agreement between the lattice results and experimental data has been confirmed
[78, 76]. Thus, triangular links connecting three sectors, i.e. experimental data, perturbation theory
and lattice calculation, are established for this quantity, which is yet another evidence of the success
of QCD.

The study of short-distance quantities necessarily involves a sum over hadronic final states.
In this sense, the relevant process is inclusive. Namely, one does not specify any particular final
state but treats all possible final states with a given quantum number added with some weight over

9
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a momentum variable. Such analysis is not limited to the R-ratio (or equivalently the vacuum
polarization function), and here I would like to discuss an application to inclusive semi-leptonic
decays.

In order to be specific, let us consider the inclusive decay process B→ Xc`ν with Xc repre-
senting any possible state with a charm quark, such as D(∗), Dπ , Dππ , and so on. This process
is more complicated than e+e− → cc̄, as there are two independent kinematical variables q2 and
pB ·q. Here, qµ is a momentum transfer to the lepton pair `ν and pµ

B denotes the momentum of the
initial B meson.

The partial decay rate is proportional to |Vcb|2 as well as to the structure function

Wµν = ∑
Xc

(2π)3
δ
(4)(pB−q− pX)

1
2MB
〈B(pB)|J†

µ(0)|Xc〉〈Xc|Jν(0)|B(pB)〉, (4.2)

where the sum is over all possible final states Xc with momentum specified by pX = pB− q and
Jµ is the weak current c̄γµ(1− γ5)b. Using the optical theorem − 1

π
ImT = W , one can relate the

structure function (4.2) to the forward scattering matrix element

Tµν = i
∫

d4xe−iqx 1
2MB
〈B(pB)|T{J†

µ(x)Jν(0)}|B(pB)〉. (4.3)

An important question is, then, whether this matrix element is calculable on the lattice.
In the region of q2 and pB · q where the physical processes occur, the matrix element Tµν

develops an imaginary part, which is not easily accessible on the Euclidean lattice. Instead, we
consider the region of pB · q for which the energy injected to the final Xc state is not sufficient
to produce real states. In other words, for the lattice calculation we take the region v · (pB −
q) < MD. (Here, vµ = pµ

B/MB denotes the four-velocity of the initial B meson, so that the inner
product v · (pB− q) represents the energy given to Xc.) The matrix element in this unphysical
kinematical region may be related to the physical decay amplitude, i.e. the imaginary part of Tµν ,
using Cauchy’s integral of the form

T (v ·q) =
∫ (v·q)max

−∞

d(v ·q′)
π

ImT (v ·q′)
v ·q′− v ·q , (4.4)

where I explicitly write the dependence on v ·q while assuming fixed q2.
Lattice calculation of the relevant matrix element is straightforward though more costly than

the standard form factor calculations. One needs to calculate four-point functions to obtain

CJJ
µν(t;q) =

∫
d3xeiq·x 1

2MB
〈B(0)|J†

µ(x, t)Jν(0)|B(0)〉. (4.5)

It is a function of a time-separation between the two inserted currents J†
µ and Jν . Then, the matrix

element at the unphysical kinematical point may be constructed using a “Fourier” (or Laplace)
transform

T JJ
µν(ω,q) =

∫
∞

0
dt eωtCJJ

µν(t;q). (4.6)

Then, it may be compared with the physical amplitude through the relation (4.4). This is the
strategy proposed in [79]. (The same strategy may also be applied to the study of (not-so) deep
inelastic scattering. See also [80].)

10
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Figure 4: Forward-scattering matrix elements dTkk/dω as a function of the energy ω injected to the final
charmed state. Lattice data are plotted for vector Vk (red circles) and axial-vector Ak (blue squares) channels.
Spatial recoil momentum is set to zero. Curves are expectations from heavy quark expansion. See the text
for details.

Results for dTkk/dω are plotted in Figure 4. Lattice data for the spatial vector (red circles) and
axial-vector (blue squares) channels are plotted together with the expectation from the heavy quark
expansion to O(1/m2) [81, 82]. The b quark mass is lower than its physical value, mb ∼ 2.4mc,
and we set the spatial recoil momentum q to zero. The axial-vector channel shows a significant
contribution from the D∗ intermediate state. Indeed, it develops a pole ∼ 1/(ω −mD∗)

2 towards
larger ω . The vector channel, on the hand, is nearly vanishing. (Precisely speaking, the vector
channel is small but non-zero representing the excited-state D∗∗ contribution.)

The lattice results are compared with the expectation from the heavy quark expansion [81, 82]
(curves in Figure 4). The dashed curves are those of the leading order, while the solid curves
includes the corrections of O(1/m2

b). At this order, two parameters characterizing the B meson
bound state appear, i.e. µ2

π = 1
2MB
〈B|b̄(i~D)2b|B〉 and µ2

G = 1
2MB
〈B|b̄ i

2 σµνGµνb|B〉. We set µ2
G to

the value determined from the B-B∗ mass splitting, while µ2
π is more uncertain and we took two

nominal values 0 GeV2 (thin lines) and 0.5 GeV2 (thick lines). As can be seen clearly in the
plot, the leading order estimate is far apart from the lattice data, and there is a trend that the 1/m2

correction makes them closer. It would be interesting to see how the next order works, and, more
importantly, the perturbative corrections are to be included to have more realistic comparison. The
work in that direction is underway [83].

There is another proposal for the lattice study of inclusive decay. It utilizes the lattice correlator
CJJ

µν(t;q) in a different way. If one can solve the inverse problem

C(t) =
∫

∞

0
dω e−ωt

(
− 1

π
ImT (ω)

)
, (4.7)

the physical amplitude ImT (ω) may be extracted from the Euclidean lattice data C(t). In practice,

11
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this is not possible without having infinitely dense data available for C(t). Instead, one may try to
extract T (ω) smeared over some small interval. A systematic way of doing this was proposed by
[84].

4.2 Long-distance effects

Another interesting area where lattice calculation may give a significant impact is a study of
long-distance effects. A well-known example is the B→ K`+`− decay, which may have a signifi-
cant contribution from intermediate b→ sc̄c state due to resonances J/ψ , ψ ′, etc. Since they can
occur through a Cabbibo-allowed operator O2 = (s̄γµPLc)(c̄γµPLb), the corresponding amplitude
is large especially near the resonances. In the experimental analysis one therefore eliminate the
regions of q2, invariant mass squared of the final-state leptons, close to the corresponding reso-
nances. It is not entirely clear, however, how much effects are left outside of these regions, and
lattice calculation may shed new light on this problem. (For a review of the situation, see, for in-
stance [85]. It also emphasizes that the factorization approximation doesn’t reproduce the available
experimental data.)

Lattice study of the long-distance effects of this type has been initiated by the RBC/UKQCD
collaboration [86, 87] for K→ π`+`−. The problem is simpler for B→K`+`− as long as the effect
of the cc̄ contributions is concerned. Essentially, one needs to calculate the matrix element of the
form ∫

∞

0
dt eωt

∫
d3xe−iq·x〈K(q)|J(em)

µ (t,x)H (0)|B(0)〉, (4.8)

where the weak effective Hamiltonian H relevant to the process of interest contains the four-
fermion operator (c̄γµPLb)(s̄γµPLc) as well as (c̄γµPLc)(s̄γµPLb). The integral over t with a factor
eωt specifies the energy ω inserted to the electromagnetic current J(em)

µ = c̄γµc. In order that the
integral stays finite, the value of ω must be lower than the energy of J/ψ .

Before analyzing the amplitude (4.8), it is interesting to see how well the factorization assump-
tion approximates the matrix element 〈K(q)|J(em)

µ (x)H (0)|B(0)〉. Here, the factorization assump-
tion implies that a matrix element of complex process approximated by a product of simpler matrix
elements, e.g.

〈K(q)|J(em)
µ (x)(c̄γµPLc)(s̄γµPLb)(0)|B(0)〉 ' 〈K(q)|s̄γµPLb(0)|B(0)〉〈0|J(em)

µ (x)c̄γµPLc(0)|0〉.
(4.9)

Here the B→ K form factors and charmonium decay constant are used to express the more com-
plicated process of b→ scc̄→ s`+`−. It may introduce an uncontrollable systematic error, as it
ignores for instance the effect of rescattering of the final state K with the charmonium.

By a lattice calculation, it turned out that the factorization is well satisfied for the operator O1 =

(c̄γµPLc)(s̄γµPLb), while an O(1) violation is observed for O2 = (c̄γµPLb)(s̄γµPLc). Namely, a ratio
of the matrix elements of O1 and O2 is expected to be 1/3 in the factorization approximation, and a
preliminary lattice data is more like zero [88]. A strong violation of the factorization approximation
was found for the ∆I = 3/2 amplitude of K→ ππ and it may be a key for an understanding of the
∆I = 1/2 rule [89]. It would therefore be interesting to see how the subtle details of the strong
interaction affects the amplitude of B→ K`+`−.
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4.3 Non-local current insertions

There are physical quantities that are related to a matrix element of bilocal operators. Both of
the last two applications, the forward-scattering matrix element for inclusive decays and the non-
local current insertions for B→ K``, are examples of such quantities. There are more examples
related to interesting physics applications.

One is a matrix element corresponding to the process B→ `νγ . This decay mode is special
because by adding a photon one can avoid the helicity suppression of the leptonic decay B→ `ν .
It could therefore be significant even though one has to pay the penalty of α = 1/137. It may also
provide an interesting testing ground for the lepton flavor universality. A lattice study of this decay
mode has been presented at this conference [90].

Another such (and related) example is the calculation of the QED correction to the leptonic
and semi-leptonic processes. The formulation to calculate the QED correction has been developed
for pion decay constant [91, 92, 93]. Extension of the idea to the heavier mesons is discussed at
this conference [94].

5. Conclusions

Lattice calculation for heavy flavor physics reached the stage of enabling precise calculations
at a percent level. This is an integral part of the program to search for any limitations of the Standard
Model. Experiments, such as LHCb and Belle II, are going to produce a lot of precise data in the
coming years, and the lattice calculation has to follow by improving its precision to maximize the
power of the new physics search.

The role of lattice calculation is not limited to improving the precision. There are many phys-
ical processes which would be more useful once the hadronic uncertainty is made under control.
The long-distance effect to B→ K`+`− is a good example. By extending its application, lattice
calculation would play the role to expand the horizon of flavor physics.
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