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1. Introduction

The structure of nucleons has been studied extensively in experiments, and nucleons also play
a vital role as experimental probes. This makes the controlled study of nucleons using lattice
QCD a very attractive goal. Some of the simplest matrix elements of interest include the scalar
and tensor charges, which control BSM contributions to neutron beta decay, and the sigma terms,
which control the sensitivity of dark matter detection to WIMPs.

In order to make a significant impact, lattice calculations of nucleon structure must become
precision calculations, with full control over all systematics. The traditional test observable is the
isovector axial charge gA:〈

p(P,s′
)
|ūγ

µ
γ5d
∣∣n(P,s)〉≡ gAūp(P,s′)γµ

γ5un(P,s). (1.1)

It is simple to compute, being an isovector forward matrix element, and it is measured precisely
in beta decay experiments1, with the latest PDG value [1] being gA = 1.2724(23). However, cal-
culating it accurately has been challenging: there is a long history of results being below the ex-
perimental value. Because systematic effects in gA are significant and it has been studied the most
extensively, the axial charge will be the exclusive focus of this review. This review will also focus
on recent results, particularly those presented at this conference.

This review is organized as follows. Section 2 is a brief overview of how matrix elements
are computed. Excited-state effects, which are a particularly challenging source of systematic
uncertainty, are discussed at length in Section 3. Finite-volume effects and dependence on the pion
mass are briefly reviewed in Sections 4 and 5. Finally, a summary and outlook is given in Section 6.

2. Methodology of matrix elements

The simplest approach for computing the forward hadronic matrix element of operator O is to
use a single interpolator χ at zero momentum. One computes two-point and three-point functions
and performs a spectral decomposition,

C2pt(t)≡
〈
χ(t)χ†(0)

〉
C3pt(τ,T )≡

〈
χ(T )O(τ)χ†(0)

〉
= ∑

n
|Zn|2e−Ent , = ∑

n,n′
Zn′Z∗n〈n′|O|n〉e−Enτe−En′ (T−τ), (2.1)

where Zn ≡ 〈Ω|χ|n〉 is the overlap of the interpolator onto state n. In the limit where all time
separations t, τ , and T − τ are large, the ground state dominates:

C2pt(t)→ |Z0|2e−E0t (1+O(e−∆Et)
)
, (2.2)

C3pt(τ,T )→ |Z0|2e−E0t
(
〈0|O|0〉+O(e−∆Eτ)+O(e−∆E(T−τ)+O(e−∆ET )

)
, (2.3)

where ∆E ≡ E1−E0 is the energy gap to the first excited state.

1It should be noted, however, that over time the experimental value has drifted upward slightly; see the PDG’s
history plot.
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In the ratio method, the prefactors are cancelled to obtain the ground-state matrix element:

R(τ,T )≡ C3pt(τ,T )
C2pt(T )

→ 〈0|O|0〉+O(e−∆Eτ)+O(e−∆E(T−τ))+O(e−∆ET ). (2.4)

For forward matrix elements, the excited-state contributions are symmetric about τ = T/2. They
can be minimized by placing the operator at the midpoint, yielding R(T

2 ,T )= 〈0|O|0〉+O(e−∆ET/2).
An alternative approach is the summation method [2, 3], which involves summing over the

operator insertion time τ . The terms that are independent of τ grow linearly with the source-sink
separation T in the sum, whereas the terms that have an exponential dependence on τ produce
partial sums of geometric series. The derivative of the sum yields the ground-state matrix element:

S(T )≡ a∑
τ

R(τ,T ),
d

dT
S(T ) = 〈0|O|0〉+O(Te−∆ET ). (2.5)

There is some flexibility about the interval over which τ is summed. One option is to use the
“interior” region where O is between the source and the sink, possibly excluding a fixed number
of points at each end so that the sum is from τ0 to T − τ0. Another option is to sum over the
whole lattice, which is the method that was first used. In two talks at the Lattice 2010 confer-
ence [4, 5], it was pointed out that contributions from excited states decay more rapidly than for the
ratio-midpoint method; this revived interest in the summation method. In practice, the summation
method has been found to produce a larger statistical uncertainty than the ratio method, which can
negate some of its advantage; see Fig. 1.
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Figure 1: Bare axial charge, determined using the ratio method (purple circles) and summation method
(green squares), versus source-sink separation. This calculation was performed at the physical pion mass
with lattice spacing a = 0.116 fm [6]. Note that statistics for T/a≥ 6 are doubled compared with T/a < 6.

In the last few years, there has been some use of methodologies based on the Feynman-
Hellmann theorem. This states that a matrix element in a given state can be obtained from the
derivative of the state’s energy with respect to a perturbation in the Lagrangian:

L (λ )≡L +λO =⇒ ∂

∂λ
En(λ )

∣∣∣∣
λ=0

= 〈n|O|n〉. (2.6)
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Discrete derivatives are sometimes used, particularly for the nucleon sigma terms, where the theo-
rem relates nucleon scalar matrix elements to derivatives of the nucleon mass with respect to quark
masses. Evaluating the derivative of a two-point function exactly leads directly to the summation
method:

− ∂

∂λ
logC2pt(t)

∣∣∣∣
λ=0

= S(t), (2.7)

where the sum is taken over all timeslices. In the large-t limit, the time derivative of this equa-
tion yields Eq. (2.6) for the ground state. This result appeared in the original summation-method
paper [2] and has been rederived in recent years [7, 8, 9].

3. Excited-state contamination

Unwanted contributions from excited states decay exponentially and will be highly suppressed
if ∆ET � 1. However, the signal-to-noise problem [10] prevents calculations from being per-

formed at large T : this ratio decays as e−(E0−3
2 mπ )T . To be more concrete about the “brute force”

approach of simply using a large source-sink separation, assume that we are using the ratio method
in the asymptotic regime, where the statistical errors and excited-state contributions scale as

δstat ∝ N−1/2e(mN−3
2 mπ )T , δexc ∝ e−∆ET/2, (3.1)

respectively, where N is the number of statistical samples. Supposing that we want these two
uncertainties to scale together, i.e. δexc = αδstat ≡ δ for some constant α , then as δ is decreased the
source-sink separation must be increased to suppress excited state effects. An increase in statistics
is also required, both to compensate for the reduced signal-to-noise ratio, and also to meet the
smaller target statistical error; the required statistics are given by

N ∝ δ
−
(

2+ 4mN−6mπ

∆E

)
. (3.2)

At the physical pion mass with ∆E = 2mπ (see the next subsection), the exponent is roughly −13,
much larger than the −2 that is obtained when neglecting excited states. This situation could be
significantly improved if multilevel methods [11, 12] or other ideas [13] are able to reduce the
signal-to-noise problem.

Because of the difficulty in going to large T , there has been much effort spent on removing
excited states from data at relatively small source-sink separations: the two main approaches are
improving the interpolating operator and modeling the excited-state contributions.

3.1 Theoretical expectations

An approximation to the finite-volume spectrum consists of the energy levels of any number of
noninteracting stable hadrons, E = ∑i, j

√
m2

i + p2
j , where p j =

2π

L n j and n j is a vector of integers.
For a nucleon at rest, the leading excitations are states with a nucleon and any number of pions.
Positive parity requires that for an odd number of pions there must be some nonzero momenta.
These noninteracting energy gaps are shown in Fig. 2. At the physical pion mass with mπL = 4,
the lowest excitation is ∆E = 2mπ and there are eight Nπ and Nππ levels below 4mπ . As the
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box size grows, the spectrum becomes denser. On the other hand, at heavier pion masses the
energies rapidly increase and there are soon just a few levels below ∆E = 1 GeV. Going beyond
the noninteracting approximation, in Ref. [14] finite-volume quantization conditions were applied
in the Nπ sector using the experimentally measured scattering phase shift. Significant deviations
from the noninteracting levels were found, particularly for energy gaps between 0.4 and 0.8 GeV,
however the general features of the Nπ spectrum were not significantly changed.
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Figure 2: Energy gaps between noninteracting multiparticle excited states states and the nucleon ground
state. Left: as a function of box size, at the physical pion mass. Right: versus pion mass, for mπ L = 4.
At heavier pion masses one also expects additional relatively low-lying states as resonances become stable;
some possibilities include N∗(1440), ∆π , and Nσ .

Predicting excited-state contributions to two-point and three-point functions requires knowing
the spectrum En, the overlap factors Zn, and the operator matrix elements 〈n′|O|n〉. The key insight
that allows for study using chiral perturbation theory (ChPT) is that, if one assumes the smearing
size of the interpolator is small compared with m−1

π , then at leading order a single low-energy
constant controls the coupling of a local interpolator to both nucleon and nucleon-pion states, and
it is eliminated when forming ratios [15].

The prediction from ChPT for the nucleon effective mass is a percent-level excited-state con-
tribution for T & 1 fm [16, 15, 17]. On the other hand, using the ratio method, an effect at the 10%
level is predicted for gA at T = 1 fm [17, 18]. This effect increases the effective lattice value of gA,
in contrast with most numerical studies, which find that excited states decrease the extracted value
of gA. At this conference, O. Bär presented the first study of observables at nonzero momentum
transfer, namely the form factors GA and GP of the axial current; a new tree-level diagram was
found to produce a very large excited-state effect in GP [19].

ChPT is not expected to produce accurate results for the contributions from excited states with
higher energies, particularly in the vicinity of resonances; this means that it is only expected to be
valid at large source-sink separations where these contributions are suppressed, namely T & 2 fm
for gA and similar observables [20]. Deviations from ChPT for Nπ states in the resonance regime
were modeled in Ref. [14]; see Fig. 3. Under some model scenarios, the ratio-method result for
gA could be suppressed by excited states at short source-sink separations and then rise to sit 1–2%
above the true value for a wide range of larger source-sink separations. Clearly, this corresponds
to multiple excited states contributing with different signs. This sort of scenario is particularly
troublesome, as it makes systematically improving a calculation by removing excited-state effects
quite difficult.
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Figure 3: Model prediction of excited-state contributions to gA determined using the ratio method [14].
The upper pair of curves show the ChPT prediction, with the normalization of states modified using the
experimental Nπ phase shift and finite-volume quantization conditions. The other two pairs of curves show
different scenarios for modifications to the ChPT result in the resonance regime. The figure is reproduced
from Ref. [14] under the Creative Commons Attribution License.

3.2 Numerical studies

Before discussing studies in the literature, it should be noted that the available set of source-
sink separations T and source-operator separations τ depends on how the three-point function is
computed.
• The most common approach uses a fixed sink. C3pt(τ,T ) is evaluated using a sequential

propagator through the sink, so that T , the sink momentum, and the interpolating operators
are fixed. All values of τ can be obtained and any quark bilinear operator O(τ) can be used.
The computational cost increases with every value of T .
• If one instead uses a fixed operator, the sequential propagator is evaluated through O(τ),

which is thus fixed. All values of T can be obtained, and the sink momentum and interpolator
can be varied. The computational cost increases with each operator insertion and with each
value of τ . This approach has been used recently in some variational studies by the CSSM
group [21, 22].
• Rather than fixing τ , one can sum over it to obtain a summed operator in the sequential

propagator. In this case, T becomes the only relevant time separation and all values can be
obtained. The sink interpolator can be varied and the computational cost increases with each
operator insertion. This approach has been used recently by CalLat [9] and NPLQCD [8].

It is possible to replace the sequential propagator with a stochastic one. This allows for increased
flexibility but at the possible cost of increased noise [23, 24, 25, 26, 27].

3.2.1 Improving the nucleon interpolator

The usual2 proton interpolator is χ = εabc(uT
a Cγ5db)uc, constructed using smeared quark fields.

2A common alternative is to replace Cγ5 with Cγ5P+, where P+ ≡ 1
2 (1+ γ0) is a positive parity projector.
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Standard practice is to tune the smearing width such that the nucleon effective mass reaches a
plateau as early as possible. It is well known from spectroscopy that the variational method [28,
29], where one finds a linear combination of interpolating operators χvar ≡ ∑i ciχi with optimized
coefficients ci, is a powerful systematic approach for eliminating contributions from the lowest-
lying excited states to estimates of energy levels and matrix elements [30, 31]. In practice, its
effectiveness depends on the choice of interpolator basis {χi}.

A simple way to produce several interpolators is to vary the smearing width; there are two
recent studies3 that used bases comprising interpolators with three different smearing widths [33,
34]. Some results from Ref. [33] are shown in Fig. 4. The effective mass from the variationally
optimized interpolator lies very close to that of the standard interpolator with the widest smearing.
The optimized operator and the widest smearing also both show little sign of excited-state effects
in the plateaus for the axial charge, but narrower smearings do show clear signs (see e.g. Fig. 15
of [33]). Ref. [34] also found that narrower smearings suffer from larger excited-state effects. In
that study, the variationally optimized interpolator produced smaller excited-state effects than the
largest smearing. However, a still larger smearing might be as good as the variational interpolator.
One should take two clear lessons from these studies. The first is that tuning the smearing width is
important, since it can have a significant effect on excited states. The second is that when studying
a computationally more expensive alternative to the standard approach, a fair comparison should
be with a well-tuned operator; it is easy to make the standard approach appear to be worse by using
a too-narrow smearing.
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Figure 4: Comparison of analyses using a smeared standard interpolator (denoted Si for smearing width i
in lattice units) and using a variationally optimized interpolator (denoted Vi jk, using the basis {Si,S j,Sk}).
The calculation was performed using an ensemble with mπ = 312 MeV and a = 0.081 fm. Left: nucleon
effective mass. Right: estimators for bare gA, using the interpolators S9 (with four source-sink separations),
V357, and V579 (with source-sink separation 12a). The plots are reproduced from Ref. [33].

Beyond varying the smearing width, one can use different local operator structures such as
εabc(uT

a Cdb)γ5uc. This approach has been used to add negative-parity interpolators to the basis,
which can be important for coupling to excited states in moving frames [22]. Including covariant
derivatives or the chromomagnetic field strength in the interpolator allows for a much larger ba-
sis [35, 36]. In Ref. [37]4, such a basis was used, employing the distillation method to efficiently

3See Refs. [32, 21] for earlier studies.
4C. Egerer presented preliminary results at this conference.
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construct the correlators. In general, a larger basis was more effective at removing excited-state
contributions, with the largest effect seen in the tensor charge. This reference also reports that
the Laplacian-Heaviside smearing used in distillation produces smaller excited-state effects from
the standard operator than the more commonly used Wuppertal smearing, however it is unclear
whether either smearing was tuned.

3.2.2 Fitting excited states

A natural strategy for removing contributions from excited states is to fit correlators [or derived
quantities such as R(τ,T ) or S(T )] using a model that includes excited-state effects. By far the most
common model is based on a truncation of the spectral decomposition to a small number of states
(two or three). Generally the two-point function provides the strongest constraints on the energies
En and overlaps Zn, and the three-point function serves to determine the matrix elements 〈n′|O|n〉.
Commonly, the energy gap ∆E is found to be between 0.5 and 1.0 GeV, which is usually greater
than the expected lowest-lying excitation energy shown in Fig. 2.
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Figure 5: Excited-state fits for bare gA. Both calculations were performed using the same HISQ ensemble
with a ≈ 0.09 fm and mπ ≈ 220 MeV. Left: two-state fit to data using domain wall valence quarks and
the summed operator method, with smeared and point sinks (filled circles and open squares, respectively).
Right: three-state fit to data with clover valence quarks and the fixed sink method, for three source-sink
separations. The left plot is adapted from Ref. [38] and the right plot is reproduced from Ref. [39] under the
Creative Commons Attribution License.

Some recent examples are given in Refs. [38, 39]. In Ref. [38], the extracted value of gA was
shown to be stable when the fit range is varied; similarly, in Ref. [39] stability was shown with
respect to varying fit ranges and the number of states in the fit model. Figure 5 shows the preferred
fits for gA on the same ensemble (albeit with different valence quark action). In both cases, the fits
start with a minimum time separation of 3a. Given the pion mass and box size, there are more than
ten noninteracting excited energy levels with energy gap ∆E < 1 GeV; for the first points included
in the fit these are only suppressed by e−3a∆E > 0.25. Clearly, it is difficult to associate the “excited
state” in the fit with a single actual state.

At this conference, K. Ottnad presented a different fitting approach [40] that does not deter-
mine the energy gap ∆E from the two-point function. Instead, fits are performed to the ratios
R(τ,T ); fitting six different observables simultaneously is sufficient to constrain ∆E. Interestingly,
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in this case the fitted energy gap approaches the expected lowest-lying noninteracting level as the
minimum time separation included in the fit, tstart, is increased.

In order for these fits to be trustworthy, ideally they would be required to have good fit qualities
(p-values). (This is not a sufficient condition!) A strong test is given in Ref. [41]: when the fit is
repeated on many ensembles, the distribution of fit qualities should be uniform, which can be
checked using a Kolmogorov-Smirnov (KS) test. More than half of the fit qualities in Ref. [38] are
below 0.2, and hence the KS test indicates that they are not compatible with the uniform distribution
(p< 10−3). In contrast, the fits in Ref. [39] are acceptable from this point of view (p= 0.26). Some
caution may be required, however, when fitting to many variables, as the difficulty in inverting a
large covariance matrix can make it difficult to reliably estimate χ2 and the fit quality.

3.3 Outlook on excited states

It is natural to ask why the picture in Fig. 2 of low-lying Nπ and Nππ states does not appear
in the spectrum of typical variational analyses or multi-state fits. One argument is that the coupling
of a multiparticle state to a local interpolator is suppressed by the inverse lattice volume. However,
this should be compensated by the density of states so that in infinite volume the interpolator will
couple to continua of multiparticle states. In fact, model predictions such as Fig. 3 show a weak
volume dependence; this suggests that continuum spectral functions might yield suitable fit models
for excited states in large volumes.

The absence of multiparticle states is familiar from meson spectroscopy. It has been found that
a variational basis must include nonlocal operators in order to identify the complete and correct
spectrum; see, e.g., [42]. Even though nucleon structure only requires removing excited states and
not obtaining precise knowledge of them, it may still be necessary to include nonlocal operators
in order to benefit in practice from the proven improved asymptotic approach to the ground state
when using the variational method [30, 31].

Given that state of the art nucleon structure calculations have not reconciled their data with
theoretical expectations for excited-state effects, perhaps the safest approach is to analyze data in
multiple ways: ratio and summation methods, which don’t make specific assumptions about the
spectrum of excitations, as well as fits that can make use of shorter time separations. This was done
in the extensive excited-state study of Ref. [34], which also included a variational setup, as well as
in some recent physical-pion-mass calculations by ETMC (see e.g. [43]).

4. Finite-volume effects

There is a long history of attributing a low value for gA computed on the lattice to finite-volume
effects. These effects were computed in ChPT in Ref. [44]; neglecting loops with ∆ baryons, the
leading contribution at large volume is

gA(L)−gA

gA
∼ m2

πg2
A

π2F2
π

√
π

2mπL
e−mπ L. (4.1)

In addition to being exponentially suppressed at large mπL, if one fixes mπL and decreases mπ this
effect will also be reduced. If this expression holds true, then a calculation with mπL = 3 at the
physical pion mass will have smaller finite-volume effects than one with mπL= 4 at mπ = 300 MeV.
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Figure 6: Controlled studies of finite-volume effects in gA [45, 39, 38, 46, 47, 48, 49, 50]. Each study has
two or more volumes at the same pion mass, which is indicated in the legend. The largest volume of each
study is used for normalization, and a black dot is placed over the symbol to indicate that the central value
is fixed at one. The horizontal axis contains the dependence on pion mass and volume from Eq. (4.1).

There have been several fully-controlled studies of finite-volume effects in gA, i.e., the same
calculation performed on ensembles that differ only by their volume. These are summarized5 in
Fig. 6. For large values of mπL and small pion masses, no effect is observed within uncertainties
at the few percent level. As the right hand side of Eq. (4.1) is increased, the first significant effect
is at the 5% level in the calculation by RQCD at mπ = 290 MeV and mπL = 3.4. However, this is
a negative effect rather than the positive effect predicted by Eq. (4.1). Encouragingly, the physical
pion mass with mπL = 3 corresponds to 0.03 on the horizontal axis, where no effect has been
detected.

Global fits to a set of ensembles — where the pion mass, lattice spacing, and volume are all
varied — provide a different approach to study finite-volume effects. The challenge is that any
failure of the fit function to accurately describe the dependence on the other variables is a source
of systematic uncertainty in the estimate of finite-volume effects. This is especially true because
most sets of ensembles will tend to have larger values of mπL at larger pion masses and on coarser
lattice spacings. Using a global fit, Ref. [39] assumed the volume dependence of gA has the form
cm2

πe−mπ L with c a free parameter, and found a −0.9(5)% effect at the physical pion mass with
mπL = 4. A similar approach was used by Ref. [40], and a similar effect size was found. Finally,
Ref. [38] assumed the leading heavy baryon ChPT expression and allowed a higher-order term
proportional to m3

π ; this also produced a small effect at the physical pion mass.

5Calculations where the lattice temporal extent was varied together with the spatial volume are also included.
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5. Chiral extrapolation

In heavy baryon ChPT, the pion mass dependence of the axial charge is known to take the form

gA(mπ) = g0− (g0 +2g3
0)

(
mπ

4πFπ

)2

log
m2

π

µ2 + c1m2
π + c2m3

π +O(m4
π), (5.1)

where g0 is the axial charge in the chiral limit and c1,2 are additional low-energy constants. Al-
though the prefactor of the chiral log is known, it is unclear how high of a pion mass can be
reached before the convergence of ChPT breaks down. As a result, recent calculations that per-
formed a chiral fit [51, 52, 38, 53, 39, 40], including results presented by R. Gupta and K. Ottnad
at this conference, generally preferred to use a simple polynomial dependence on m2

π .
The issue of chiral extrapolation can, of course, be avoided by using only lattice ensembles

with near-physical pion masses. Results using this approach were presented at this conference by
M. Constantinou [54], Y. Kuramashi [55], C. Lauer [46], Y. Lin [56], and S. Ohta [57].

0.8 0.9 1.0 1.1 1.2 1.3 1.4
gA

N f =
2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

Figure 7: Recent calculations
of the nucleon axial charge
using 2 flavours of dynami-
cal sea quarks [45, 43, 51]
(green), 2+1 flavours [52, 53,
58, 55, 40] (orange), and 2+
1+1 flavours [59, 38, 39, 54]
(blue). Published results are
shown with a filled symbol.
The PDG value [1] is indi-
cated by the vertical band.

Figure 7 shows some recent determinations of the axial charge. It is encouraging that several
collaborations are now able to reproduce the experimental value, although there is still a tendency
for results to sit below experiment and no result is even half a standard deviation above experiment.
Given that the experimental value is known, it may be useful for future calculations to perform a
blinded analysis.

6. Summary and outlook

Excited-state contamination remains a major focus of nucleon structure calculations. A full
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variational study including nonlocal interpolators that couple well to multiparticle states could help
to determine whether current methods are adequate. In contrast, no sign of large finite-volume
effect in gA has been observed in the existing fully-controlled studies at low pion masses.

Discretization effects were not discussed in this review, in part because they are not universal.
In general they appear to be less important than excited states, but they are nevertheless important
for controlling uncertainties and can have a significant impact on the outcome such as in Ref. [39].

It should be stressed that the results in Fig. 7 have not been filtered based on any quality criteria.
Such an evaluation is necessary for obtaining a reliable “lattice QCD average” of any observable.
However, it may be particularly difficult to set standards for controlling excited-state effects, since
analysis strategies vary significantly. A first community attempt was made in Ref. [60], and some
nucleon structure will also be included in the next FLAG review.

Bringing simple observables like gA under precise control over all sources of systematic un-
certainty will be an important step toward reliable calculations of more complex observables such
as the proton charge radius and parton distribution functions. Systematics in these observables will
require further study; in particular, finite-volume effects could be important for form factors [55]
and discretization effects might be significant for parton distribution functions, which are generally
not O(a) improved.
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