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Numerical Implementation of Gauge-Fixed Fourier
Acceleration
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In hybrid Monte Carlo evolution, by imposing a physical gauge condition, simple Fourier accel-
eration can be used to generate conjugate momenta and potentially reduce critical slowing down.
This modified gauge evolution algorithm does not change the gauge-independent properties of the
resulting gauge field configurations. We describe this algorithm and it numerical implementation.
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1. Introduction

In the hybrid Monte Carlo (HMC) evolution of gauge configurations, as the spacing between
lattice points is decreased, the gauge fields can be separated into short-distance, stiff modes, as well
as relatively long-distance and less constrained modes. The conventional HMC algorithm does not
differentiate these modes; long-distance and short distance modes evolve with the same velocity.
The molecular dynamics step size is limited by the short-distance modes and is smaller than what is
necessary for the long-distance modes, while the number of steps is restricted by the long-distance
modes and is more than what is necessary for the short-distance modes. This leads to slowing down
of gauge configuration evolution and is usually referred to as critical slowing down.

We present an algorithm that is intended to apply Fourier acceleration to reduce critical slowing
down and accelerate the generation of gauge field ensembles. In contrast to the conventional HMC
algorithm, we use a different fictitious mass for different modes, arranged so that the velocities
for the long-distance modes will be much larger than those of the short-distance modes. One
barrier to applying Fourier acceleration is that for the QCD action, the spatial dependence of the
different modes of the gauge field is obscured by Yang-Mills gauge symmetry. This problem can be
overcome if we introduce some sort of physical gauge fixing. In our implementation, we introduce
a gauge-fixing term into the action to softly fix the gauge fields to Landau gauge. Instead of fixing
the gauge rigidly, the gauge fields are allowed to move in a small neighborhood of Landau gauge.

2. Gauge Fixing

To resolve the difficulty resulting from gauge symmetry, we introduce the following term into
the action:

SGF1[U ] =−βM2
∑
x,µ

Re tr[Uµ(x)]. (2.1)

When this action is at minimum, the gauge links are constrained to Landau gauge without
Gribov copies [1, 2]. When evaluating the path integral with this additional term, gauge field
configurations that are close to Landau gauge get more weight, while gauge field configurations
farther away from Landau gauge are suppressed. M appears as a mass-like parameter which can
be tuned to determine how rigidly Landau gauge fixing is imposed. If we choose M to be a large
number then the gauge links will be effectively restricted to a small neighborhood of Landau gauge.

The behavior of this term in the weak coupling limit has been analyzed through one loop in
Ref. [3]. Compared to other possible gauge-fixing actions, this one is easier to implement and is
relatively computationally cheap. Its linear dependence on each link allows the use of the usual
heatbath algorithm to generate gauge transformation fields in an inner Monte Carlo which will be
discussed soon.

After the introduction of this gauge-fixing term, another compensating term is needed to ensure
that gauge-fixing does not affect any gauge-independent properties of the resulting gauge config-
urations. Using the gauge invariance of the original pure gauge action and properties of the Haar
measure, one finds that for any gauge-invariant observable O:
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〈O〉=
∫

dUe−S[U ]O[U ] (2.2)

=
∫

dU
∫

dg′e−SGF1[Ug′ ]e−S[U ]O[U ]∫
dge−SGF1[Ug]

(2.3)

=
∫

dU
∫

dg′e−SGF1[Ug′ ]e−S[Ug′ ]O[Ug′ ]∫
dge−SGF1[Ug]

(2.4)

=
∫

dUe−S[U ]−SGF1[U ]−ln
∫

dge−SGF1 [U
g ]

O[U ], (2.5)

where Ug represents the gauge configuration after gauge transformation, i.e. Ug
µ(x)= g(x)Uµ(x)g(x+

µ̂)†. Thus we can add the following compensating term to the action

SGF2[U ] = ln
∫

dg e−SGF1[Ug]. (2.6)

Adding SGF1 and SGF2 into action will not change the expected value of any gauge-invariant
operator. The resulting Green’s functions of gauge-invariant quantities will be identical to those
generated with the original gauge action. To sum up, our total action is:

S[U ] = Swilson[U ]+SGF1[U ]+SGF2[U ] (2.7)

SGF1[U ] =−βM2
∑
x,µ

Re tr[Uµ(x)] (2.8)

SGF2[U ] = ln
∫

dg e−SGF1[Ug]. (2.9)

The molecular dynamics force, which acts on the conjugate momenta in the hybrid Monte
Carlo integration, is calculated from the derivative of action. The compensating term SGF2 involves
an integral over gauge transformation fields, which brings in major difficulties for this algorithm.
One approach to solve this difficulty is to make use of importance sampling and replace the integral
with a sum over gauge transformations distributed according to e−SGF1[Ug].

Fl =
∂

∂Ul
{Swilson[U ]+SGF1[U ]}−

N

∑
n=1

∂SGF1[Ugn
]

∂Ul
. (2.10)

Then calculating the molecular dynamics force stemming from SGF2 becomes a standard
Monte Carlo computation. Similarly, in the accept-reject step of the HMC algorithm, we are sup-
posed to compute the change in the action between the beginning and the end of the a trajectory.
SGF2 cannot be calculated directly; however, the difference in SGF2 is calculable

SGF2[U ′]−SGF2[U ] = ln
∫

dg e−SGF1[U
′g]∫

dg e−SGF1[Ug]
(2.11)

= ln
∫

dg e−SGF1[Ug]eSGF1[Ug]−SGF1[U
′g]∫

dg e−SGF1[Ug]
(2.12)

≈ ln
1
N

N

∑
n=1

eSGF1[Ugn
]−SGF1[U

′gn
]. (2.13)
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Thus, calculating ∆H also involves an average over gauge transformations chosen with the
Monte Carlo weight e−SGF1[Ug]. This summation is a sum of exponentials and will be strongly
dominated by a few exponentials which are extraordinarily large compared to the typical value.
Therefore, computing the difference in the action is a challenge and may require a great number of
samples to get an accurate value.

3. Fourier Acceleration

As the mass parameter M in the gauge fixing action is increased, the resulting configurations
will be more nearly in Landau gauge and introducing Fourier acceleration into the molecular dy-
namics kinetic energy should be effective in decreasing critical slowing down.

In continuum limit, the effects of gauge-fixing action has been analyzed in Ref. [3]. On the
lattice, to achieve Fourier acceleration, we propose to use the following kinetic energy term

Hp = ∑
k

tr(Pµ(−k)Dµν(k)Pν(k)) (3.1)

Dµν(k) =
1

sin( k
2)

2 + ε2
PT

µν(k)+
1

M2 PL
µν(k) (3.2)

PT
µν(k) = δµν −

e−i kµ

2 sin( kµ

2 )e
i kν

2 sin( kν

2 )

sin( k
2)

2
(3.3)

PL
µν(k) =

e−i kµ

2 sin( kµ

2 )e
i kν

2 sin( kν

2 )

sin( k
2)

2
. (3.4)

As required for Fourier acceleration, this choice is the inverse of the quadratic part of our entire
gauge-fixed action [3]. Since PT and PL appearing in the equation above are projection operators,
the square root of the coefficient matrix Dµν in that equation can be readily evaluated and thus
conjugate momenta Pν(k) can be generated by selecting samples from a Gaussian distribution and
multipying them by

√
Dµν .

4. Conclusion

In this article, we have described a new algorithm aimed at reducing critical slowing down of
the HMC algorithm for lattice QCD. Several components must be combined to realize soft Landau
gauge fixing, which introduce an inner Monte Carlo that is computationally expensive and brings in
statistical errors. Numerical experiments are required to test the feasibility of this algorithm and to
search for proper parameters. Especially, the extra computational workload caused by inner Monte
Carlo needs to be determined and optimized; also, we are supposed to choose an appropriate soft
gauge-fixing parameter M which can effectively reduce critical slowing down and at the same time
avoid bringing in too large a statistical error. Code has been written based on the Grid system and
is now being tested.

The gauge-fixed Fourier acceleration algorithm affects only gauge evolution and will work
equally well for any type of dynamical fermions. Thus further numerical experiments are required
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to examine how effectively it can reduce critical slowing down with dynamical fermions. Inner
Monte Carlo makes the pure gauge evolution much more computationally costly, but numerical
tests are needed to compare its computational complexity with that of dynamical fermions and to
determine if this algorithm can make the overall evolution more efficient.
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