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1. Introduction

In generating a Markov chain, we aim at speeding up Monte Carlo simulations, making
proposal configurations far from the current configuration in phase space, with relative low cost.
Molecular Dynamics (MD) evolution in fictitious time using random momenta naturally extends
and mitigates the Langevin-like random walk behavior. This Hybrid Monte Carlo (HMC) algo-
rithm [1] works well in high dimensional systems, such as lattice QCD. Approaching the contin-
uum limit of the lattice theory, some physical modes in MD slows down exponentially, leading
to research in Fourier acceleration [2 – 4] as a possible remedy. The analogous Riemannian mani-
fold HMC [5] claims success for some probability density functions in guiding the MD evolution
through the phase space. Recent efforts [6 – 8] surge in analyzing and applying similar techniques
to lattice QCD. We focus on employing, as the acceleration kernel, a numerically cheaper ap-
proximation of the Hessian matrix from the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm [9, 10] (L-BFGS), a common quasi-Newton optimization method. This approximation
applies to not only the gauge fields but also the pseudo-fermion fields. The HMC, nevertheless,
requires changes to adopt such approximation that uses information from multiple configurations.

In this paper we present the ensemble quasi-Newton HMC (QNHMC) method, discuss the
characteristics of the method on two-dimensional U(1) lattice gauge theory, and show preliminary
results of its effect on the autocorrelation of the average plaquette value and topological charge.

2. Markov chain for assisted MD evolution

The MD evolution in the heart of the HMC algorithm follows from Hamiltonian dynamics,

H(x, p) = S(x)+
1
2

p†G−1 p, ẋ = G−1 p, ṗ =−∇S, (2.1)

where S is the action, p the fictitious momenta, and G a fixed MD mass matrix. A symplectic
and reversible discrete integrator advances the state of the Markov chain from (x, p) to (x′, p′)
over a fictitious time period, τ , the trajectory length. Using the Hamiltonian as the negative log
probability of the enlarged phase space including x and p, the correctness of the HMC demands a
positive definite G.

The choice of G affects the performance of HMC. For a general action, a MD mass matrix
containing the local information of the Riemann curvature can bring considerable speedups [5] in
the efficiency of Markov Chain Monte Carlo methods. The article recommends the Fisher infor-
mation matrix as G. Fourier acceleration [3, 4] suggests the field Laplacian operator as G. We
are interested in using a fixed G during one MD trajectory, for its simplicity and efficiency. Any
explicit symplectic reversible integrator for equation (2.1) would still be applicable. However, this
also means that G cannot depend on any configurations from this one whole MD trajectory.

In general we want a proposal of (x′, p′) for the next state of the Markov chain from (x, p)
following a symplectic and reversible discretization of the MD evolution (2.1) where G−1 comes
from our choice of a function, G −1,

G−1 = G −1({Xi}N −1
i=0

)
. (2.2)

whose argument is a list of N configurations Xi, which are all different from x, x′, or any config-
uration along the discretized path of this particular MD evolution. Assuming a particular choice

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
2
7

Ensemble Quasi-Newton HMC Xiao-Yong Jin

of G−1 could help through out the Markov chain generation, we can fix G −1 and {Xi}N −1
i=0 , opti-

mally picked from available configurations, and the HMC procedure remains the same except for
the additional mass matrix G.

In this paper, we focus on building G−1 that is fixed during one MD evolution but changes after
each trajectory. We use {Xi}N −1

i=0 from a set of parallel streams of Markov chains. We update one
of the streams using information from the others, suggested in references [11, 12]. We can have
multiple ways to generate such Markov chains, and obtain G of X from neighboring streams. The
following is the base case with provable reversibility. We use an arbitrary information exchange
kernel F to generalize the ensemble assisted Markov chain.

Let N be the number of coupled parallel streams, each labeled X j, for j = 0 to N− 1. Let
F be a function on a unordered set of configurations, {Xi}N −1

i=0 , with N = N− 1. Let U be a
symplectic and reversible mapping that generates the next state of one Markov chain, from X j to
X′j = U

(
F
(
{Xi}N −1

i=0

))
X j. Given a fixed set of {Xi}N −1

i=0 , U depends on the value of F , and
satisfies the detailed balance, π(X j)P(X j|X′j) = π(X′j)P(X′j|X j), where π is probability density
we want to simulate and P the transition probability. We give the definition of {Xi}N −1

i=0 within the
steps of the ensemble assisted Markov chain described in the following.

1. When updating Xk for each k from 0 to N−1:

(a) Setting the list, {Xi}N −1
i=0 from the list {X j} j ̸=k, with N = N−1.

(b) Evolve Xk according to U
(
F
(
{Xi}N −1

i=0

))
.

2. After generating one trajectory for each N parallel streams, Set the new {X′j} to the reversed
sequence of it, X′j← X′N−1− j. This is for the purpose of reversibility.

⋯ 0 1 2 3 0′ 1′

⋯ 0 1 2 3
⋯ 0 1 2 3 0′

⋯ 0 1 2 3 3′ 2′ 1′ 0′

⋯ 0 1 2 3 0′ 1′ 2′
⋯ 0 1 2 3 0′ 1′ 2′ 3′

ℱ({1,2,3})

Reverse

ℱ({2,3,0′})
ℱ({3,0′,1′})

ℱ({0′,1′,2′})

Figure 1: One update for N= 4.

Figure 1 illustrates an example of one update with
N = 4 streams. The current configurations from these
four streams are labeled with 0, 1, 2, and 3. We up-
date those successively, each time with information ob-
tained from the function F applied to configurations
from other streams. After updating each stream to 0′,
1′, 2′, and 3′, we reverse the ordering of those, and
complete this one update. We can see that when we re-
verse the Markov chain, we would update 3′ first with
the information from F ({2′,1′,0′}), because F does
not depend on the ordering of Xi, we can reproduce
the reversed Markov chain.

For the purpose of assisting MD evolution, where
U represents the procedure of refreshing p, integrat-
ing the equation (2.1), and finishing with a Metropolis-
Hastings accept/reject step, we use

G−1 = F
(
{Xi}N −1

i=0

)
= G −1

(
sorted

(
{Xi}N −1

i=0

))
, (2.3)

where a special routine sorted sort the set of Xi before applying the function G −1, because our
choice of G in equation (2.2) depends on the ordering of Xi, and sorting guarantees the same
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G−1 with a reversed procedure. In addition to the simple case presented here, we can build more
involved Markov chains by using more states per parallel stream for the exchange kernel F , or by
decoupling some of the parallel streams for parallel evolution.

3. L-BFGS approximated Hessian

Among N coupled parallel HMC streams, for each stream, we use the latest configurations
from the other streams to construct the approximate Hessian with the L-BFGS algorithm. For these
N−1 configurations, we compute the site-wise finite differences of lattice gauge fields, Uk,

sk = logUkU
−1

k−1 = logUkU
†

k−1, yk = ∇S(Uk)−∇S(Uk−1), k = 1 . . .L≤ N−2, (3.1)

where sk and yk are fields of the elements of the Lie algebra, L is the length of the L-BFGS memory,
and the inequality comes from selecting only those field pairs with s†

kyk = y†
ksk > 0 (the inner

product implicitly traces over the color indices and sums over lattice) for the positive definiteness
of the approximated Hessian. As required in equation (2.3) we sort the field pairs according to s†

kyk.
The L-BFGS algorithm gives the inverse Hessian as a recursively defined operator,

G −1
k = (I−ρksky†

k)G
−1
k−1(I−ρkyks†

k)+ρksks†
k , G −1

0 = 1/(2β ), (3.2)

where 2β as an initial value comes from the diagonal term of the Hessian matrix of the 2-D U(1)
action in the weak coupling limit. The associated L-BFGS Hessian matrix can be expressed as,

Gk = Gk−1 +
yky†

k

y†
ksk
−

Gk−1sks†
kGk−1

s†
kGk−1sk

. (3.3)

This rank-2 update has a symmetric product form [13], showing the explicit positive definiteness,

Gk = AkA†
k , G0 = A0A†

0, Ak = (I− γkvks†
k)Ak−1, γk = ρkβk,

G −1
k = BkB†

k , G −1
0 = B0B†

0, Bk = (I−ρkskv†
k)Bk−1, ρk = 1/(s†

kyk),

αk = 1/(s†
kGk−1sk), βk =±

√
αk/ρk, vk = yk +βkGk−1sk.

(3.4)

In our test with the unmodified L-BFGS algorithm, the low eigenvalues of the approximated
Hessian matrix decreases rapidly as the L-BFGS memory length increases, even after removing all
the exact zero modes from the theory described in the next section. While the largest eigenvalues
are stable, the condition number increases and the Hessian matrix becomes singular with a modest
L-BFGS memory length, because the approximate action surface spanned by the samples we draw
for the L-BFGS algorithm has zero modes and may even be concave. Since the MD evolution
involves the inverse of the Hessian matrix, the evolution becomes unstable with near zero modes.
A straightforward method to regulate the approximated Hessian would be to add a small term to the
diagonal of Gk. It nevertheless breaks the rank-2 update iteration, invalidates the simple inversion
formula and the symmetric decomposition for the square root of G . This would require a conjugate
gradient inversion and a rational approximation of the square root of G .

Investigating the determinant behavior from the symmetric product form (3.4) leads us to one
solution: adding a small term to one of the rank-1 updates in equation (3.3),

Gk = Gk−1 +
yky†

k

y†
ksk
−

(
1−λ

s†
ksk

s†
kGk−1sk

)
Gk−1sks†

kGk−1

s†
kGk−1sk

. (3.5)
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This still invalidates the iteration formula (3.2). The symmetric product form (3.4), however, re-
mains applicable with minimal changes. The complexity of iterating the symmetric product form
is always linear in lattice volume and, in terms of L, O(L) in space and O(L2) in time.

4. U(1) gauge theory on a 2-D lattice

We use the Wilson plaquette action for the U(1) gauge theory on a two-dimensional lattice
with periodic boundary conditions. As the QNHMC algorithm uses approximated Hessian, we first
need to remove all the exact zero modes of the Hessian from the theory, in order to improve the
stability of the MD evolution.

The gauge degrees of freedom form the exact zero modes of the Hessian. With periodic bound-
ary conditions, that is Ns×Nt −1 zero modes for a lattice with spatial and temporal extent Ns and
Nt . We fix the gauge using a maximal tree of links which we set the gauge variables Ux,µ to unity.
The maximal tree includes lattice sites x = (x0,x1) and directions µ ∈ {0̂, 1̂} satisfying{

0≤ x0 < Nt −1 with µ = 0̂ for temporal links,

x0 = 0; 0≤ x1 < Ns−1 with µ = 1̂ for spatial links.
(4.1)

There are two global gauge degrees of freedom, due to the abelian nature of the theory,{
Ux,0̂→Ux,0̂Λ0 for x0 = Nt −1,

Ux,1̂→Ux,1̂Λ1 for x1 = Ns−1,
(4.2)

where Λ0 and Λ1 are elements of the U(1) group. Thus we fix two more gauge links, U(Nt−1,0),0̂ =

U(0,Ns−1),1̂ = 1, during the MD evolution of QNHMC to remove these two zero modes.
We are interested in observables that are slow to evolve in the Markov chain, particularly the

topological charge. We use the definition of the topological charge [14, 15], Q = (∑x ArgPx)/(2π),
where the complex argument Arg takes the principle value of (−π,π). This definition does not
apply to exceptional configurations (with no contribution to the partition function in the continuum
limit) where Px =−1 for some x. On a two dimensional lattice with periodic boundary conditions,
this definition of topological charge gives exact integer values.

5. Current status, and future plans

We implement the U(1) gauge theory in the QEX framework [16]. We use PRIMME [17] to
study the eigenmodes of the exact Hessian matrix and the L-BFGS approximated one.

The results below come from the 2-D U(1) theory at β = 4.5 on a lattice of size 24×24, with
the number of coupled parallel HMC streams, N= 10 and 20, using the number of configurations
from 8192 to 65536, depending on the trajectory length. The MD evolution uses the Omelyan’s
second order minimum norm integrator [18]. We keep the number of steps per MD trajectory fixed
at 8, 16, 32, or 64, while tuning for optimal trajectory length separately for conventional HMC and
QNHMC.

Figure 2 shows the integrated autocorrelation length of topologic charge squared (left) and
the average plaquette (right). To include the cost of generating the Markov chain, we multiply the
integrated autocorrelation length by the number of MD steps in an HMC trajectory, converting the
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Figure 2: Integrated autocorrelation length of the topologic charge squared (left) and the average plaquette
(right) in units of discrete MD steps. GFix denotes gauge fixing during MD. QN stands for QNHMC.

correlation length from the unit of configuration to the unit of MD steps. We refer to this quantity as
the cost of generating configurations for uncorrelated measurable quantities, in terms of the force
evaluations, and we tune simulation parameters to lower the cost. The apparent increase of the cost
for the average plaquette after the trajectory length grows longer than three is due to the fact that
the autocorrelation becomes minimal between successive configurations and the cost here becomes
linearly proportional to the MD steps.

Comparing the conventional HMC with and without gauge fixing, we see that the topological
quantity shows about a factor of two increased cost, going from no gauge fixing to gauge fixing.
The autocorrelation of the average plaquette value however depends less on the gauge fixing. Using
QNHMC with λ = 0.1 shows no improvement for the topological quantity, and the cost worsens
with λ = 0.01. On the other hand, QNHMC reduces the cost for the average plaquette with λ = 0.1,
and more so with increased number of coupled Markov chains, from N= 10 to 20.

Moving forward, we will do more tuning and testing with the QNHMC algorithm, studying
the scaling behavior toward the continuum limit. On the other hand, we will also look for other
approaches to approximate the Hessian. L-BFGS is designed for its efficiency in iterative optimiza-
tions. Since we have an ensemble of Markov chains, we will look for other ways to approximate
the Hessian matrix [19, 20].
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