
P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
3
0

Solving DWF Dirac Equation Using Multisplitting
Preconditioned Conjugate Gradient

Jiqun Tu∗†

Department of Physics, Columbia University, New York, NY 10027, USA
E-mail: jt2798@columbia.edu

We show that using the multisplitting algorithm as a preconditioner for conjugate gradient inver-
sion of the domain wall fermion Dirac operator could effectively reduce the inter-node commu-
nication cost, at the expense of performing more on-node floating point operations. This method
could be useful for supercomputers with far more on-node flops than inter-node communication
bandwidth.

The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018
22-28 July, 2018
Michigan State University, East Lansing, Michigan, USA.

∗Speaker.
†The speaker wishes to thank his advisor Robert Mawhinney for the support for this work. The author also wants to

express gratitude to Guo Duo, Chulwoo Jung, Christopher Kelly and Norman Christ for the suggestions and comments.
The algorithm is implemented numerically with the help from these libraries: CPS, Grid, Qlattice and QUDA.
Thanks to Kate Clark and NVIDIA for the numerical support.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:jt2798@columbia.edu


P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
3
0

Jiqun Tu

1. Introduction

The cost of lattice QCD simulations with dynamical fermions is dominated by the solution
of the Dirac equation in both the ensemble generation phase, where configurations of gauge fields
are generated, and the measurement phase, where expectation values of physical observables are
measured. The Dirac matrix, which is the gauge field dependent discretization of the fermionic
part of the continuous QCD action, is a large sparse linear system and inverting the corresponding
Dirac equation poses tremendous numerical difficulty. For domain wall fermions(DWF) the con-
jugate gradient(CG) algorithm proves to be a stable algorithm to solve the Dirac equation but the
convergence rate is limited by the condition number of the Dirac matrix, which is typically large in
simulations with physical pion mass.

For the measurement phase various eigen-space methods, including EigCG[1] and implicitly
restarted Lanczos algorithm with Chebyshev polynomial[2], have been developed successfully to
speed up the inversion. Low-lying eigenvectors(eigenvectors corresponding to small eigenvalues)
of the Dirac matrix are generated and the previously large condition number is effectively reduced
to improve the convergence rate of CG. In this phase for one gauge field configuration typically a
large number of Dirac equations with the same Dirac matrix but different right hand sides(RHS, or
sources) are solved. The large number of sources amortizes the cost of eigenvector generation and
the total computation time is reduced.

This is not the case for the ensemble generation phase. During a typical hybrid Monte Carlo(HMC)
evolution of a gauge field as few as one Dirac equation is solved for a single Dirac matrix. This
renders it not worthwhile to generate the low-lying eigenvectors for a particular Dirac matrix.

The development of supercomputers has greatly increased the number of floating point opera-
tions per second(flops) that can be performed on each processor(node). Modern lattice simulations
usually divide the gauge field and pseudo-fermion fields into sub-fields that are stored and com-
puted locally on different processors of a large parallel computer. This increases the total theoret-
ical floating point operation capability. Inter-processor data transfer(communication), however, is
needed to perform coherent operations, including the Dirac matrix multiplication. Computations
locally performed on one processor require contents of the sub-fields that are stored and updated
on other processors. For a specific operation if the rate of communication could not keep up with
the local flops then communication becomes the bottleneck and the high flops are not utilized.

For standard CG solver with DWF one Dirac matrix multiplication is performed for each
iteration. The precise requirement varies with the size of the lattice and processor grid, but roughly
this requires one byte of communication for each local floating point operation. On some of the
newest machines, for example the SUMMIT machine at Oak Ridge National Laboratory(ORNL),
inter-processor communication speed is much less than the requirement set by their high local
floating point operation capability.

In [3] a domain decomposition algorithm is proposed for Dirac equation with Wilson fermion.
Local inversions are performed on two halves of the lattice iteratively. However, attempts to apply
the same or similar algorithms to the inversion of the DWF Dirac equation have not been successful.

In this work we report on our investigation into a preconditioned CG solver for solving the
DWF Dirac equation for the ensemble generation phase of the simulation. We find a precondi-
tioner that decreases the number of CG iterations needed for a solution, while increasing the local

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
3
0

Jiqun Tu

computation required per iteration, thus changing the balance of local computation to off-processor
communication.

2. Method

2.1 Multisplitting Algorithm

In [4] a multisplitting algorithm is proposed for solving generic large linear systems distributed
across a parallel computer. Compared to the domain decomposition algorithm in [3], it does not
require checkerboarding. Before each iteration the boundary content of the solution field on each
of the processors is communicated to its neighbors. During each iteration, the algorithm uses
this communicated neighboring solution field as the Dirichlet boundary condition to perform the
inversion of a local matrix on each processor. After each iteration, the updated boundary content is
again communicated to prepare for the next iteration.

Al As Ar

xr

xs

xl

bs

× =

A × x = b

locally
stored on
node

Figure 1: Decomposition of the matrix A, the solution vector x and the right-hand-side(RHS) vector b into
local parts on each node.

Following [5], suppose the equation to be solved is Ax = b. For a particular processor the
matrix A and vectors x and b are decomposed according to figure 1, where xs and bs are the part
that is locally stored on this processor. On each processor the original equation turns into

Asxs +Alxl +Arxr = bs. (2.1)

The Alxl +Arxr part involves off-processor content and is calculated before each iteration via com-
munication. As is the part of the matrix that requires only the locally stored part of x on a certain
processor s, i.e. xs. Then for each iteration the algorithm solves the equation

Asxs = bs −Alxl −Arxr (2.2)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
3
0

Jiqun Tu

locally for xs on this processor. The updated solution xs will then be communicated to the neigh-
boring processors. This whole procedure can be done concurrently on all nodes once the commu-
nication work to calculate Alxl +Arxr is done.

2.2 Domain Wall Fermions

The domain wall fermion(DWF)[6] formulation is based on Wilson fermion and a fictitious
fifth dimension. Modern numerical implementations of DWF utilize the fact that only the matrix
elements that connect the even sites to odd sites and those connecting odd sites to even sites depend
the gauge field. The matrix entries that connect even sites to even sites and those connect odd sites
to odd sites are constant. Here the even-odd parity is defined by the 4D components of a site:

parity ≡ (x+ y+ z+ t) mod 2. (2.3)

In the 4D even-odd preconditioning form the Möbius DWF Dirac equation can be written as,(
M5 M4

eo

M4
oe M5

)(
ψe

ψo

)
=

(
ϕe

ϕo

)
, (2.4)

where the subscript e/o refer to even and odd sites. This is equivalent to solving the following
even-odd preconditioned equation,

DPCψe = ϕ̂e, DPC ≡ M5 −M4
eoM−1

5 M4
oe, ϕ̂e ≡ ϕe −M4

eoM−1
5 ϕo. (2.5)

Here M4
eo/oe includes the Wilson hopping term Dw

x,y that connects 4D space-time sites to their near-
est neighbors,

M4
oe/eo = Dw

x,yMϕ , Dw
x,y ≡ ∑

µ

[
(1+ γµ)U

†
x−µ̂,µδx−µ̂,y +(1− γµ)U†

x,µδx+µ̂,y

]
, (2.6)

and M5 and Mϕ are constant matrices that are diagonal in the four Euclidean space-time dimensions.
Details of these matrices can be found in [7].

The CG algorithm requires the matrix to be hermitian and positive definite. A common practice
is to multiply both sides of (2.5) with D†

PC and solve the equation with the normal operator D†
PCDPC

and the new RHS D†
PCϕ̂e instead,

D†
PCDPCψe = D†

PCϕ̂e. (2.7)

2.3 Dirichlet Boundary Condition on the 4-Hop Normal Operator

There are four Wilson hopping terms, one in each M4
eo/oe, in the normal operator D†

PCDPC,

D†
PCDPC =

[
M5 −M4

eoM−1
5 M4

oe
]†[M5 −M4

eoM−1
5 M4

oe
]
. (2.8)

To apply the multisplitting algorithm to equation (2.7) Dirichlet boundary conditions are to be
enforced on the normal operator D†

PCDPC, i.e. the local part(the As in (2.1)) of this normal operator
needs to be constructed. As the vector content is distributed across the processors according to
its 4D space-time location, this local part for D†

PCDPC includes snake terms that hop out of the

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
3
0

Jiqun Tu

boundary and hop back in as the various components in (2.8) are evaluated. Figure 2 illustrates
this and gives some examples of the snake terms. These terms are truncated if Dirichlet boundary
conditions are enforced on each of the four M4

eo/oe hopping terms sequentially. Our simulation
results show that the inclusion of these snake terms is crucial to the convergence.

Figure 2: The normal operator D†
PCDPC has as many as 4 Wilson hopping terms. Enforcing Dirichlet

boundary condition on it requires the inclusion of the snake terms, e.g. the black arrows.

2.4 Multisplitting Algorithm as a Preconditioner of CG

In [3] to achieve faster convergence the domain decomposition algorithm is eventually used as
a preconditioner of GCR. In this work we use the multisplitting algorithm as a preconditioner of
CG.

Pseudocode for a generic preconditioned CG is shown below, where we are solving Ax = b
and M is the preconditioning matrix. The preconditioning step is marked with blue background.
The overall convergence rate of preconditioned CG is estimated by the condition number of AM−1.
If the condition number of AM−1 is smaller then that of the original matrix A, faster convergence
rate is achieved.

Now for this preconditioning step we use the multisplitting algorithm to solve for zk+1 in

Azk+1 = rk+1. (2.9)

To avoid inter-processor communication, a zero initial guess(xl = xr = 0) is used in (2.2) and only
the first iteration is performed. With rk+1 as the RHS and zk+1 the solution,

Asxs = bs −Alxl −Arxr → Aszk+1,s = rk+1,s. (2.10)

This is equivalent to using the local part of the matrix A, As, on each processor as the preconditioner
M in the preconditioned CG,

M =
⊕

s
As, s = node index. (2.11)

The local nature of As makes it possible to perform the preconditioning step concurrently on all the
processors without communication. We refer to this as multisplitting preconditioned CG(MSPCG).

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
3
0

Jiqun Tu

Algorithm 1 Preconditioned Conjugate Gradient Ax = b
r0 = b−Ax0

z0 = M−1r0

p0 = z0

k = 0
while have not converged do

αk = ⟨rk,zk⟩/⟨pk,Apk⟩
xk+1 = xk +αk pk

rk+1 = rk −αkApk

zk+1 = M−1rk+1

βk = ⟨zk+1,rk+1⟩/⟨zk,rk⟩
pk+1 = zk+1 +βk pk

k = k+1
end while

3. Results

The multisplitting preconditioned CG is applied to solve Dirac equations on three 2+1 fla-
vor lattice ensembles generated with Möbius domain wall fermions, all with physical input quark
masses. Standard CG is used to perform the inversion in the preconditioning step. Instead of adopt-
ing a precision based stopping condition, a fixed number of CG iterations, which will be referred
as inner iterations, are performed for these preconditioning solves. The iterations performed in
the overall preconditioned CG will be referred as outer iterations. In table 1 the numbers of outer
iterations needed for the preconditioned CG to converge are reported on the different lattice ensem-
bles, together with the stopping condition for the outer CG(precision) and the processor grid size
used. The numbers of iterations to reach the same precision with standard CG are also included for
comparison, where the inner iteration number is marked with plain.

Typically on these ensembles with 6 inner iterations the preconditioned CG reduces the outer
iteration count by a factor of 3. More inner iterations reduce the outer iteration count more but the
reduction saturates as the inner iteration count increases: with large number of inner iterations the
inner CG solves the preconditioning inversion completely and no further numerical benefit can be
exploited.

4. Conclusion

Our results show the MSPCG reduces the number of outer iterations needed to solve the DWF
Dirac equation, reducing the inter-processor communication at the expense of performing more
local inner iterations. We observe that executing a fixed number of inner CG iterations for the pre-
conditioning inversion, instead of using a precision based stopping condition, does not jeopardize
the convergence of the outer CG. This is true even when as few as 3 inner iterations are performed.
As a consequence the inner iteration count is a parameter that can be tuned to achieve maximum
speed up in the trade-off between inter-processor communication and local computation.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
3
0

Jiqun Tu

lattice size a−1[GeV] precision processor grid size inner iterations outer iterations

323 ×64 1.37 10−8

− plain 13594

23 ×4 3 9106

23 ×4 4 6020

23 ×4 6 5126

643 ×128 2.36 10−10

− plain 18092

43 ×8 6 6008

43 ×8 12 5083

43 ×8 18 4948

802 ×96×192 3.00 10−10
− plain 16783

42 ×82 6 5719

Table 1: Number of outer iterations need to converge the multisplitting preconditioned CG for the lattice
ensembles tested in this work. Inner iterations refers to the fixed number of CG iterations performed for the
preconditioning inversion. Rows marked with plain indicate the iteration count for the same standard CG to
converge.

We note that while the multisplitting algorithm can split the general matrix A in a variety
of ways, the splitting presented here, used as a preconditioner in CG, makes it equivalent to the
additive Schwarz algorithm. (The additive Schwarz algorithm has been used for the Dirac equation
inversion for the fermions[8, 9].) We use the name MSPCG, as it is through the process of applying
the multisplitting algorithm to the DWF Dirac equation that we realize the necessity of including
the snake terms in the local matrix.

References

[1] A. Stathopoulos and K. Orginos, SIAM J. Sci. Comput. 32, 439 (2010).

[2] Y. Saad, SIAM J. Numer. Anal. 17, 687 (1980).

[3] M. Lüscher, Comput. Phys. Commun. 156, 209 (2004), [arXiv:hep-lat/0310048].

[4] D. P. O’Leary and R. E. White, SIAM J. Algebr. Discret. Methods 6, 630 (1985).

[5] F. Jezequel, R. Couturier, and C. Denis, J. Supercomput. 59, 1517 (2012).

[6] K. Jansen, Phys. Rep. 273, 1 (1996), [arXiv:hep-lat/9410018].

[7] R. C. Brower and H. Neff, 1 (2014), [arXiv:1206.5214].

[8] Y. Osaki and K.-i. Ishikawa, 1 (2010), [arXiv:1011.3318].

[9] R. Babich et al., (2011), [arXiv:1109.2935].

6

http://arxiv.org/abs/hep-lat/0310048
http://arxiv.org/abs/hep-lat/9410018
http://arxiv.org/abs/1206.5214
http://arxiv.org/abs/1011.3318
http://arxiv.org/abs/1109.2935

