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With the ever-growing number of computing architectures, performance portability is an impor-
tant aspect of (Lattice QCD) software. The Grid library provides a good framework for writing
such code, as it thoroughly separates hardware-specific code from algorithmic functionality and
already supports many modern architectures. We describe the implementation of a multigrid
solver for Wilson clover fermions in Grid by the RQCD group. We present the features included
in our implementation, discuss initial optimization efforts, and compare the performance with
another multigrid implementation.
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1. Introduction

State-of-the-art Lattice QCD simulations are performed with (nearly) physical quark masses
on large and fine lattices. The resulting numerical cost of inverting the Dirac matrix can be reduced
significantly by multigrid (MG) methods. Constructing a working MG for Lattice QCD turned out
to be a complicated endeavor, but by now MG algorithms exists for all major fermion formulations:
Wilson/clover [1, 2, 3, 4, 5], domain wall [6, 7, 8], overlap [9], twisted mass [10], staggered [11].

In the typical workflow of a (Lattice QCD) programmer, there is tension between the desire
for easy code development and the need to obtain high performance. Grid [12, 13] is a data-parallel
library that aims to resolve this tension. It addresses all three major parallelization paradigms on
CPUs: (i) SIMD based on site fusing, (ii) threading based on OpenMP (fork-join model), and (iii)
message passing based on MPI. Grid exposes an elegant high-level interface that allows for rapid
code development.

New features are constantly being added to Grid. The present contribution describes the im-
plementation of an MG solver for Wilson clover fermions in Grid [14], including significant per-
formance optimizations that also benefit other fermion formulations.

2. Implementation details

2.1 Features

Our work is based on the MG building blocks already present in Grid, which where devel-
oped in the implementation of the HDCR algorithm for domain-wall fermions [8]. In particu-
lar, two classes are of relevance: The intergrid operators are implemented in Aggregation,
while the creation and the application of the coarse-grid Dslash operator are implemented in
CoarsenedMatrix. Since Grid places particular emphasis on generic code we can reuse these
classes for implementing an MG solver for a different fermion formulation.1 The methods men-
tioned above are sufficient for a two-level MG method. However, the need for larger and finer
lattices with physical quark masses requires the addition of more levels. To be able to support an
arbitrary number of levels we enable the coarse matrix to recursively be projected to a coarser grid.
Adhering to the coarsening interface, this only requires us to implement two member functions of
CoarsenedMatrix, i.e., Mdiag, which applies the diagonal part of the Dirac matrix to a vector,
as well as Mdir, which applies the hopping term in a single direction.

On top of these classes we implement the actual solver class and thus the solver’s interface to
the outside world. Reflecting the recursive nature of the MG algorithm, the solver class recursively
calls instances of itself using templating of the different matrix types.

The basic setup used in HDCR, which we will refer to as initial setup from now on, iterates
a smoother on random vectors to find near-null vectors, i.e., approximate low modes of the Dirac
operator, and then constructs the relevant multigrid operators. At the start of our work, this func-
tionality was already present in Aggregation. Our implementation adds the more sophisticated
setup proposed by DDalphaAMG: After running the initial setup based on the smoother, it utilizes
the entire MG preconditioner to perform an iterative refinement procedure for a better approxi-
mation of the near-null space. More setup iterations significantly accelerate the solver but imply

1Likewise, all performance improvements achieved within theses classes will benefit other fermion formulations.
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additional numerical cost. Therefore, there is a tradeoff between the number of setup iterations and
the number of solves a particular setup can be used for [4]. The optimal number of setup iterations
will be different for HMC and analysis runs.

Multigrid for Wilson-like fermions is run directly on the Dirac operator D, not on the squared
operator D†D. Hence solvers for non-Hermitian matrices are used within the multigrid method.
Standard choices here are algorithms based on conjugate and minimal residuals. We introduce
variants of the latter type within the Grid framework: MinimalResidual (MR), its generalized
form (GMRES), and the corresponding flexible version (FGMRES). The latter allows for right-
preconditioning by a non-stationary preconditioner matrix and is thus well suited as an outer Krylov
solver. At the time of the conference we had fixed the smoother on every MG level and the coarse-
grid solver to GMRES.

Normally the multigrid preconditioner is run in lower precision than the outer solver. Grid’s
precisionChange enables our implementation to go from an MG solver fixed to one precision
(double or single) to a mixed-precision approach (outer solver in double, preconditioner in single)
by changing one line of code.

At the time of the conference, our implementation was still missing some attractive features
typically used in MG inverters, e.g., the Schwarz Alternating Procedure (SAP), which is commonly
used as a smoother on all MG levels, or red-black preconditioning. In the meantime we have been
working on including these and other features [14].

2.2 Chirality

A successful multigrid for Wilson clover fermions must preserve chirality through the coars-
ening of the Dirac operator, i.e., left- and right-handed components must not be mixed. This way,
the γ5-Hermiticity of the Dirac operator acting on the spin d.o.f. translates to σ3-Hermiticity act-
ing on the coarse chirality d.o.f. Usually this is realized by separating the left- and right-handed
components of the null-space vectors when creating the intergrid operators from them, i.e., the pro-
longation operator reads P =

[1
2(1+ γ5)ψi,

1
2(1− γ5)ψi

]
. Due to limitations in Grid’s coarsening

infrastructure we are forced to store the null-space vectors in a chirally-doubled format. Obvi-
ously, this wastes memory (as explicit zeros are stored), doubles the memory requirement on the
null-space vectors, and leads to unnecessary work to be performed in the setup. Again, this is
something we have been improving on since the time of the conference.

3. Performance tuning

After implementing an almost feature-complete MG algorithm we now consider initial per-
formance characteristics of our code. We first run a small 164 test lattice on a single node with
the default parameter set of DDalphaAMG and investigate the run-time distribution. As Figure 1
shows, most of the run time is spent in the setup on the finest level. Therefore we show a more
detailed look at its run-time contributions in Figure 2. The construction of the coarse link matrices
(CoarsenOperator) dominates the run time, the major contribution being the application of the
restriction operator. Taking a close look at this function (blockProject) we quickly discover
the reason. The code is threaded over the sites of the fine lattice, which requires a critical region
when writing to the corresponding coarse site in order to avoid race conditions. Therefore only one
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Figure 1: Run-time distribution of the 3-level MG method with default DDalphaAMG parameters on a 164

lattice, run on a single Xeon Phi 7210 (KNL) node. Level 1 is the finest level.

thread runs at a given time, which significantly deteriorates performance. We alleviate this problem
by threading over the sites of the coarse lattice. Although this requires the introduction of a lookup
table (calculated serially) it removes the potential race condition since each thread only writes to
its set of coarse sites and hence enables the function to be run in parallel. Figure 3 illustrates the
performance improvement we achieve with this change. We are able to speed up this function by a
factor of 15 and sustain a memory bandwidth of 250 GB/s. The KNL we are using has a peak mem-
ory bandwidth of ∼440 GB/s from high-bandwidth MCDRAM. The reason why we are not able to
saturate the memory bandwidth lies in the memory access pattern on the fine lattice we introduced
with our changes. We verified this by running a benchmark with a linearized lookup table. Doing
so we are able to sustain the wire bandwidth. With our changes to blockProject we were able
to reduce the total run-time contribution of this function from 54% to 11% so that it no longer

NextLevel
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Figure 2: Left: Run-time contribution of the setup in Figure 1. The green and orange parts correspond to
the finest level, while the blue part contains all other levels. Right: Run-time contribution of the operator
coarsening on the finest level.
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Figure 3: blockProject threaded over fine (blue) and coarse (orange) lattice sites.

is the dominating contribution. From a practical point of view, it is not worth putting in further
optimization efforts until it becomes the bottleneck again. In total our modification accelerated the
entire MG setup by a factor of 2, as depicted in Figure 4.
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Figure 4: Performance improvements resulting from our changes to blockProject.

4. A first comparison with DDalphaAMG

We now compare the present state of our MG implementation to the current go-to MG library
for CPUs, DDalphaAMG [15],2 to see how we compare in terms of solver wall-clock time. We
do this comparison on a standard Intel Xeon CPU of the Broadwell series, as both code bases
have support for it. Note that DDalphaAMG normally uses SAP as its smoother. However, we

2See [16, 17, 18] for ports of DDalphaAMG to the Intel Xeon Phi (KNC, KNL) and the K computer.
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System Lattice Blocksize Mass Basis vectors Smoother

8-core Broadwell 164 44 −0.25 20 GMRES

Table 1: Parameters for the comparison of DDalphaAMG and our current Grid MG implementation.

choose to run it with GMRES to get a fair comparison, as our code does not feature SAP yet.
Apart from that we let both code bases use their full set of features, i.e., the most modern ISA
they support (SSE for DDalphaAMG and AVX2 for Grid). For DDalphaAMG we enable even-
odd preconditioning, which our implementation does not feature yet. Table 1 summarizes the
parameters of the benchmark run. Solver parameters not explicitly stated are set to their best values
proposed by the authors of DDalphaAMG [5].

In Table 2 we show the run times of the various algorithmic components as a function of
the number of setup iterations. Our Grid MG implementation is consistent with DDalphaAMG’s
behavior in terms of outer solver iteration counts. This gives us further confidence (in addition to
internal checks in the code) that our method was implemented correctly. We observe that, compared
to DDalphaAMG, the setup phase of Grid MG takes about twice longer, while the solve is about
twice faster. Grid MG does worse in the setup since (i) due to the chiral doubling, see Sec. 2.2,
the number of null-space vectors is twice that of DDalphaAMG and (ii) it does more work than
DDalphaAMG (9 vs 5 stencil points in CoarsenOperator). These effects are alleviated by the
length of the SIMD vectors (128 bits for SSE, 256 bits for AVX2). The SIMD length also explains
the faster solve of Grid MG, which is not affected by (i) and (ii).

Note that Table 2 is a snapshot corresponding to the results presented at the conference. In the
meantime, the improvements mentioned in Section 2 led to a total run time of our Grid MG that is
about 60% that of DDalphaAMG on the same lattice.

Outer Iter. Initial Setup Iterative Setup Solve Total

Setup iter.
Code D G D G D G D G D G

0 98 98 5.48 16.9 0 0 19.4 11.7 24.9 28.6
1 79 78 5.60 16.2 5.0 13.4 16.5 9.49 27.1 39.1
2 48 59 5.56 16.3 10.1 26.4 11.4 7.52 27.1 50.2
3 31 42 5.67 16.4 16.4 38.9 8.34 5.88 30.4 61.2
4 26 32 5.53 16.5 23.5 52.5 7.04 4.63 36.1 73.6
5 25 27 5.60 16.5 30.1 65.6 6.77 3.96 42.5 86.1
6 25 26 5.50 16.5 35.8 78.6 6.78 3.80 48.1 98.9
7 25 25 5.51 16.1 43.0 92.3 6.82 3.70 55.3 112.1
8 25 25 5.69 16.2 49.1 104.9 6.86 3.69 61.6 124.8
9 25 25 5.71 16.6 55.4 118.4 6.82 3.72 67.9 138.7
10 26 25 5.66 16.2 62.0 131.9 7.12 3.72 74.8 151.8

Table 2: Run-time comparison of DDalphaAMG (D) and Grid MG (G). For details see text.
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5. Summary and outlook

We implemented a multigrid solver for Wilson clover fermions within the Grid framework
and started to improve its performance. While our implementation passes algorithmic regression
against the DDalphaAMG library, at the time of the conference the time to solution of our code
was higher than that of DDalphaAMG. In the meantime we have improved the performance of our
code and implemented missing parts of the algorithm [14].
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