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We compute hybrid static potentials in SU(3) lattice gauge theory using a method to automatically
generate a large set of suitable creation operators from elementary building blocks. This method
allows to find sets of creation operators, which generate trial states with large ground state over-
laps for all investigated angular momentum and parity sectors. We present numerical results for
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1. Introduction

Mesons, where the gluons contribute to the quantum numbers in a non-trivial way, are called
hybrid mesons. Such hybrid mesons are not limited to quark model quantum numbers JPC with
P = (−1)L+1 and C = (−1)L+S, where L ∈ {0,1,2, . . .} is the orbital angular momentum and
S ∈ {0,1} is the quark spin. Improving our understanding of hybrid mesons and other exotic
hadrons is an important goal in modern theoretical particle physics (for a review cf. [2]). For
example, since hybrid mesons are also a popular topic for current and future experiments (e.g.
the GlueX and the PANDA experiments; for a review cf. [1]), a sound theoretical knowlegdge is
mandatory to interpret the expected experimental data.

In this work we discuss, how to compute hybrid static potentials with SU(3) lattice gauge
theory and show first numerical results (for previous similar work cf. e.g. [3–10]). Such hybrid
static potentials are relevant for hybrid mesons with a heavy quark Q and a heavy antiquark Q̄,
typically QQ̄ ∈ {cc̄,bb̄}. Quite often lattice gauge theory results for hybrid static potentials are
used as input in effective field theory approaches or phenomenological studies, e.g. to predict the
spectrum of heavy hybrid mesons in the Born-Oppenheimer approximation (cf. e.g. [11–15]). The
focus of this work is on finding suitable sets of creation operators, which generate trial states with
large ground state overlaps.

2. Quantum numbers and trial states

We compute hybrid static potentials from Wilson loop-like correlation functions using SU(3)
lattice gauge theory. The gluonic excitations are realized by replacing the straight spatial Wilson
lines of the Wilson loops by parallel transporters, which have a more complicated structure. We
put the static quark and the static antiquark, which we treat as spinless color charges, on the z axis
at positions rQ = (0,0,+r/2)≡+r/2 and rQ̄ = (0,0,−r/2)≡−r/2.

Hybrid static potentials are characterized by the following quantum numbers:

• Λ∈ {Σ .
= 0,Π .

= 1,∆ .
= 2, . . .}, the absolute value of the total angular momentum with respect

to the QQ̄ separation axis, i.e. the z axis.

• η ∈ {g .
= +,u .

= −}, the eigenvalue of the combination of parity and charge conjugation
P ◦C .

• ε ∈ {+,−}, the eigenvalue of the spatial reflection along the x axis, which is an axis perpen-
dicular to the QQ̄ separation axis, Px.

Note that for angular momentum Λ > 0 the spectrum is degenerate with respect to ε = + and
ε =−. The labeling of states is thus Λε

η for Λ = 0 = Σ and Λη for Λ > 0.
A hybrid static potential trial state with quantum numbers Λε

η can be constructed via∣∣Ψhybrid
〉

S;Λε
η

= Q̄(−r/2)aS;Λε
η
(−r/2,+r/2)Q(+r/2) |Ω〉 , (2.1)
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where

aS;Λε
η
(−r/2,+r/2) =

=
1
4

3

∑
k=0

exp
(

iπΛk
2

)
R
(

πk
2

)(
S(−r/2,+r/2)+ηSP◦C (−r/2,+r/2)+

εSPx(−r/2,+r/2)+ηεS(P◦C )Px(−r/2,+r/2)
)
. (2.2)

R denotes a rotation around the QQ̄ separation axis, S is a path of spatial links different from a
straight line connecting the quark and the antiquark and SX denotes X ∈ {P ◦C ,Px,(P ◦C )Px}
applied to S.

3. Correlation functions and lattice setup

We determine hybrid static potentials with quantum numbers Λε
η , which we denote by VΛε

η
(r),

from the asymptotic exponential behavior of temporal correlation functions

WS,S′;Λε
η
(r, t) =

〈
Ψhybrid(t)

∣∣
S;Λε

η

∣∣Ψhybrid(0)
〉

S′;Λε
η

=

=

〈
Tr
(

aS′;Λε
η
(−r/2,+r/2;0)U(+r/2;0, t)

(
aS;Λε

η
(−r/2,+r/2; t)

)†

U(−r/2; t,0)
)〉

U
∼t→∞

∼t→∞ exp
(
−VΛε

η
(r)t

)
. (3.1)

U(r; t1, t2) denotes a straight line of temporal gauge links at r from time t1 to t2 and 〈. . .〉U is the
average on an ensemble of gauge link configurations distributed according to e−S.

All computations presented in this work have been performed using SU(3) lattice gauge theory
and the standard Wilson gauge action. We use a single ensemble of 5500 gauge link configura-
tions, generated with the Chroma QCD library [17]. The lattice volume is 243×48. For the gauge
coupling we choose β = 6.0, which corresponds to lattice spacing a ≈ 0.093fm, when identify-
ing r0 with 0.5fm. Standard smearing techniques are applied to the gauge links appearing in the
correlation functions (3.1). Temporal gauge links are HYP2 smeared, spatial gauge links are APE
smeared.

4. Optimization of hybrid static potential creation operators and trial states

Since the signal-to-noise ratio of correlation functions (3.1) decreases exponentially with re-
spect to the temporal separation, it is essential to identify hybrid static potential creation operators,
which generate trial states with large ground state overlap. This allows to extract hybrid static
potentials at rather small temporal separations, where the signal-to-noise ratio is favorable.

The starting point is a large set of 19 quite distinct operators S, where a small exemplary
subset is shown in Figure 1. From these operators we construct a large number of different trial
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states
∣∣Ψhybrid

〉
S;Λε

η

using eq. (2.1). To check, whether a trial state has large ground state overlap,
we compute the effective mass

Veff;S;Λε
η
(r, t)a = ln

( WS,S;Λε
η
(r, t)

WS,S;Λε
η
(r, t +a)

)
(4.1)

at temporal separation t = a, where contributions of excited states are most prominent. Small
effective masses indicate trial states with large ground state overlaps, while operators leading to
large effective masses can be discarded.

SI,1 SII,3 SIII,3 SIV,2 SV,1

Figure 1: An exemplary subset of operators S used to generate trial states
∣∣Ψhybrid

〉
S;Λε

η

according
to eq. (2.1). Arrows represent straight paths of gauge links. Arrows with same color (red, green,
blue) represent the same number of gauge links (black arrows can represent different numbers of
gauge links). Dotted arrows can have length zero, while solid arrows represent at least one gauge
link.

In a first step we consider each operator S separately and optimize its extents for each hybrid
potential sector Λε

η . In other words, for all Λε
η and all arrows of all the example operators shown in

Figure 1 we determine the number of gauge links they represent, such that the ground state overlap
of the corresponding trial state is maximal.

To further improve the ground state overlaps of the trial states, we resort to variational tech-
niques to generate the results shown in section 5. For each sector Λε

η we select a small “optimal
set” of 3 to 5 operators S, which yield the smallest effective masses at t = a after the optimiza-
tion outlined above. We then compute the corresponding correlation matrix and solve generalized
eigenvalue problems.

5. Numerical results

We compute the ground state hybrid static potential for each of the sectors
Λε

η = Σ−g ,Σ
+
u ,Σ

−
u ,Πg,Πu,∆g,∆u as well as the ground state and first excited static potential for the

sector Λε
η = Σ+

g . For these computations we use correlation matrices C j,k;Λε
η
(r, t) = WS j,Sk;Λε

η
(r, t)

and solve the generalized eigenvalue problems

CΛε
η
(r, t)v(n)(r, t, t0) = λ

(n)(r, t, t0)CΛε
η
(r, t0)v(n)(r, t, t0) (5.1)
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with t0 = a and n = 0,1, . . .. We then obtain the ground state potentials VΛε
η
(r) by fitting a constant

to the resulting effective potentials

V (n)
eff;Λε

η
(r, t, t0) = ln

λ (n)(r, t, t0)
λ (n)(r, t +a, t0)

, (5.2)

for n = 0 and similary the first excitation V ′
Σ
+
g
(r) for n = 1.

-2

0

2

4

0.5 1 1.5

        Σ+
g , Σ′+

g Σ−
g Σ+

u Σ−
u Πg Πu ∆g ∆u

r/r0

r 0
(V

(r
)
−

V
Σ

+ g
(2

r 0
))

Figure 2: The ordinary static potential V
Σ
+
g
(r)r0 and the corresponding first excitation V ′

Σ
+
g
(r)r0

as well as the hybrid static potentials VΛε
η
(r)r0, Λε

η = Σ−g ,Σ
+
u ,Σ

−
u ,Πg,Πu,∆g,∆u as functions of

the separation r/r0, where r0 = 0.5fm. To allow a straightforward comparison with results from
the literature, e.g. with [3, 6], the vertical scale has been shifted by an additive constant such that
V

Σ
+
g
(2r0) = 0.

It is interesting to compare our resulting hybrid static potentials to the results from [3, 6],
which are frequently used in recent publications (cf. e.g. [12,13]) and seem to be the most accurate
lattice results for hybrid static potentials currently available. For the majority of potentials there
is no obvious qualitative discrepancy. Clearly visible differences can be observed for VΠg(r) and
V∆u(r) at small separations r. Our results for these potentials are somewhat lower than those from
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[6] and exhibit the expected approximate degeneracy with V ′
Σ
+
g
(r) and V

Σ
+
u
(r), respectively (for

a detailed discussion of these degeneracies and their relation to gluelump masses cf. e.g. [16]).
Interestingly, we have found that the resulting potentials VΠg(r) and V∆u(r) are quite sensitive to the
creation operators used in the correlation matrices. In both cases the operator SIV,2 (cf. Figure 1)
significantly increases the ground state overlap and, thus, is essential to observe the previously
mentioned and expected degeneracies at short r. We interpret this as indication that our selected
sets of operators are better able to isolate the groundstate potentials for short r in the Πg and ∆u

sectors than the operators used in [3, 6].

6. Outlook

An essential point of this work is the extensive optimization of hybrid static potential creation
operators. We plan to use these optimized operators in future follow-up projects concerned with
the computation of 3-point functions. Such 3-point functions might allow to compute quark spin
corrections, to study decays to ordinary quarkonium states and glueballs or to investigate the gluon
distribution inside heavy hybrid mesons. First results concerning the latter direction have recently
been published [18–20].
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