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1. Introduction

Recently, remarkable progresses in the study of meson-meson scattering have been achieved in

lattice QCD calculation. A large amount of finite-volume energy levels are obtained by introducing

various interpolating operators and many moving frames. The rich lattice spectra encode valuable

information of the scattering processes in question. For the meson-meson scattering processes

that are still lacking any direct experimental measurement, the lattice spectra are specially useful.

Nevertheless, most of the available lattice energy levels are calculated at unphysically large pion

masses. Therefore, a chiral extrapolation is generally needed in order to obtain physical observables

from those lattice energy levels. The method with flexible algebraic parameterizations of the K

matrix popularly used in many lattice analyses [1, 2] is efficient to perform the fits to the precise

lattice energy levels, which, however, may not provide reliable formulas for the chiral extrapolation.

In Refs. [3,4], we have proposed to use unitarized chiral amplitudes by including the finite-volume

effects to fit the lattice energy levels, which turn out to be successful in reproducing the lattice

data at unphysically large pion masses. An important advantage is that we can reliably perform the

chiral extrapolation using the chiral amplitudes, which enables us to predict the physical scattering

amplitudes directly from the lattice energy levels at unphysically large pion masses. In this paper

we review the theoretical set-up and highlight the important findings of Refs. [3, 4].

2. Theoretical formalism

The basic formula in our study is the unitarized chiral amplitude given by

T (s) =
[
1+N(s) ·G(s)

]−1 ·N(s) , (2.1)

which is an algebraic approximation of the N/D method [5,6]. By definition G(s) only includes the

s-channel unitarity/right-hand cuts and N(s) incorporates the crossed-channel contributions. In this

way, s-channel unitarity is exactly implemented and the crossed-channel effects are perturbatively

included order by order through the N(s) function. One way to represent the G(s) function is

G(s) = i

∫
d4q

(2π)4

1

(q2 −m2
1 + iε)[(P−q)2 −m2

2 + iε ]
, s ≡ P2 . (2.2)

The explicit form of the G(s) function, calculated using dimensional regularization by replacing

the divergence by a constant, reads [5]

G(s)DR=
1

16π2

{
a(µ)+ ln

m2
1

µ2
+

s−m2
1 +m2

2

2s
ln

m2
2

m2
1

+
σ

2s

[
ln(s−m2

2 +m2
1 +σ)− ln(−s+m2

2 −m2
1+σ)

+ ln(s+m2
2 −m2

1+σ)− ln(−s−m2
2 +m2

1 +σ)
]}

, (2.3)

with σ =
√

λ (s,m2
1,m

2
2) and µ the regularization scale. Differently, the N(s) function in Eq. (2.1)

can be given by the perturbative chiral amplitudes. If only the tree-level results are considered,

N(s) simply equals to the partial-wave chiral amplitudes [3, 4]. When the chiral loops are taken
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into account, one should remove the contributions from the unitarity cuts, see Refs. [7, 8]. For the

coupled-channel case, the N(s) and G(s) should be understood as matrices, spanned in the channel

space.

One can include the finite-volume corrections in the unitarized chiral amplitude through the

G(s) function. After the integration of the zeroth component q0, the four-momentum integral of

Eq. (2.2) reduces to

G(s)cutoff =
∫ |~q|<qmax d3~q

(2π)3
I(|~q|) , (2.4)

where

I(|~q|) = w1 +w2

2w1w2 [E2 − (w1 +w2)2]
, wi =

√
|~q|2 +m2

i , E =
√

s . (2.5)

When performing the integration of q0 to obtain Eq. (2.4), it is convenient to work in the center-

of-mass (CM) frame, by taking the total four-momentum Pµ as (P0,~P = 0). In the following, we

shall denote any quantity defined in the CM frame with an asterisk. Notice that a three-momentum

cutoff qmax is introduced in Eq. (2.4) to regularize the divergent integral.

The finite-volume correction can be introduced by discretizing the integral of Eq. (2.4). By

imposing periodic boundary conditions to the cubic box with length L, one can replace the three-

momentum integral in Eq. (2.4) with the discrete sum [9]

G̃ =
1

L3

|~q∗|<qmax

∑
~n

I(|~q∗|) , ~q∗ =
2π

L
~n, ~n ∈ Z

3 . (2.6)

For a quantity defined in the finite volume, we put a tilde on top of it. Then the finite-volume

correction ∆G to the G(s) function in the infinite volume takes the form

∆G = G̃−Gcutoff

=
1

L3

|~q∗|<qmax

∑
~n

I(|~q∗|)−
∫ |~q∗|<qmax d3~q∗

(2π)3
I(|~q∗|) . (2.7)

We have explicitly shown that the three-momentum cutoff qmax dependence of the quantity ∆G is

weak in Ref. [3]. In the finite-volume analysis, the corresponding expression of the function G(s)

is then given by

G̃DR = GDR +∆G . (2.8)

In a finite box, Lorentz invariance does not hold any more and one needs to explicitly calculate

the corresponding expressions in different moving frames [10–14]. For two-body scattering with

total four-momentum Pµ = (P0,~P), let us denote ~q1 and ~q2 as the three-momentum of the two

particles, with ~q1 +~q2 = ~P. The energy of the two-body system in the CM frame is E =
√

s =√
(P0)2 −|~P|2|. Via the Lorentz boost from the moving frame to the CM frame, one can obtain the

relations between ~qi and ~q∗i

~q∗
i =~qi +

[(
E

P0
−1

)
~qi ·~P
|~P|2

− q∗0
i

P0

]
~P , (2.9)
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with

q∗0
1 =

E2 +m2
1 −m2

2

2E
, q∗0

2 =
E2 +m2

2−m2
1

2E
. (2.10)

The corresponding formula of the discrete sum (2.6) in the moving frame is then given by [10]

G̃MV =
E

P0L3

|~q∗|<qmax

∑
~q

I(|~q∗(~q)|) , ~q =
2π

L
~n , ~P =

2π

L
~N , (~n,~N) ∈ Z

3 . (2.11)

The expression in the moving frame entering the finite-volume analysis reads

G̃DR,MV = GDR +∆GMV , ∆GMV = G̃MV −Gcutoff . (2.12)

For the case of the S-wave meson-meson scattering, the finite-volume energy levels correspond

to the solutions of

det[I +N(s) · G̃DR] = 0 , (2.13)

and

det[I +N(s) · G̃DR,MV] = 0 , (2.14)

for the CM and moving frames, respectively. When including higher partial waves, there will

be mixing between different partial waves and the mixing patterns vary in different irreducible

representations and different moving frames. We refer to Ref. [4] and references therein for details.

3. Results
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Figure 1: Reproduction of the lattice energy levels taken from Ref. [1], for the cases of 000A and 002A

at LO. The pion mass used in the lattice calculation is mπ = 391 MeV [1]. The squares correspond to the

central-value results from the best fit by taking Fπ = 105.9 MeV, with the surrounding shaded areas giving

the statistical uncertainties at one-sigma level. The upwards (Fπ ,H) and downwards (Fπ ,L) triangles are the

results with the upper and lower limits of Fπ = 105.9± 3.6 MeV, respectively.

With the formalism given in Sec. 2, we are ready to fit the lattice energy levels to determine

the unknown parameters, including the chiral low-energy constants in the N(s) function and the

3
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subtraction constants in G(s)DR. Here we focus on the S-wave πη , KK̄ and πη ′ coupled-channel

scattering. At leading order (LO), there are only tree-level contributions from chiral perturbation

theory and the S-wave perturbative chiral amplitudes read [7]

T
I=1,πη→πη

J=0 (s) =
(cθ −

√
2sθ )

2m2
π

3F2
π

,

T
I=1,πη→KK̄

J=0 (s) =
cθ (3m2

η +8m2
K +m2

π −9s)+2
√

2sθ (2m2
K +m2

π)

6
√

6F2
π

,

T
I=1,πη→πη ′

J=0 (s) =
(
√

2c2
θ − cθ sθ −

√
2s2

θ )m
2
π

3F2
π

,

T
I=1,KK̄→KK̄

J=0 (s) =
s

4F2
π

,

T
I=1,KK̄→πη ′

J=0 (s) =
sθ (3m2

η ′ +8m2
K +m2

π −9s)−2
√

2cθ (2m2
K +m2

π)

6
√

6F2
π

,

T
I=1,πη ′→πη ′

J=0 (s) =
(
√

2cθ + sθ )
2m2

π

3F2
π

, (3.1)

where I denotes isospin, cθ = cosθ , sθ = sinθ and θ is the LO mixing angle of η-η ′. If only

including the LO results, the matrix elements of N(s) in Eq. (2.1) simply equal to the corresponding

expressions in Eq. (3.1). At LO, the reproduction of the lattice data [1] can be seen in Figs. 1

and 2. Furthermore, we also include two types of experimental data in the fits, including the πη

invariant mass distributions from Ref [15] and the γγ → πη cross sections from Ref. [16]. In order

to fit the invariant mass distributions and cross sections, we need to introduce several additional

parameters [3], which are irrelevant to the πη , KK̄ and πη ′ scattering. The fit results of the

invariant mass distribution and cross sections can be seen in Fig. 3.

After the determination of the unknown parameters from the fits, we can perform the chiral

extrapolation to obtain the scattering amplitudes at physical meson masses. We give the predictions

of the phase shifts and inelasticities of πη → πη scattering in Fig. 4. We find that there is a

resonance pole on the fourth Riemann sheet that can be identified as the a0(980), which is located

at (1037+17
−14 − i44+6

−9) MeV. The corresponding residue is 3.8+0.3
−0.2 GeV for the πη channel and the

ratios of the KK̄ and πη ′ channels to the πη channel are 1.43+0.03
−0.03 and 0.05+0.01

−0.01, respectively.

In this paper, we have reviewed the recent works in Refs. [3, 4] to demonstrate that the chiral

amplitudes with the inclusion of the finite-volume effects are useful to extract physical scattering

observables and resonance properties from the discrete lattice energy levels obtained at unphys-

ically large meson masses. This framework can be straightforwardly applied to other scattering

processes, and it can provide valuable physical quantities that are not available from the experi-

mental measurements [4].
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Figure 2: Reproduction of the lattice energy levels from Ref. [1] for the cases of 001A, 011A and 111A at

leading order. See Fig. 1 for the notation.
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Figure 3: Reproduction of the πη event distributions from Ref. [15] (left panel) and the cross sections of

γγ → πη from Ref. [16]. The black dotted line in the left panel is the background from Ref. [15]. The blue

dotted lines in both panels stand for the central-value results at LO and the surrounding shaded areas are the

error bands at one-sigma level.
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