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We calculate the π0→ γγ transition form factor which two photons located in coordinate space,
using lattice QCD simulation with two flavors of quarks. The motivation is that the coordinate
space form factor can be measured directly on a lattice and we can also study how the distance
between two photons contributes the form factor. We set up a formula of the coordinate space
form factor that shows the property of two photons’ behaviour, and we compare the form factor
in between momentum space and coordinate space.
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1. Introduction

The pion transition form factor place an important role in dispersive approach to compute
hadronic light-by-light (HLbL) scattering [1, 2] in the muon g−2, which is one of the most precise
tests of the Standard Model of particle physics [3, 4, 5]. The dispersive framework relates the,
presumably, numerically dominant pion-pole contribution, which requires as hadronic input the
pion transition form factor F(q2

1,q
2
2), and the HLbL contribution can be obtained by integrating

some weight functions times the product of a single-virtual and a double-virtual transition form
factor [3]. We start from the Euclidean space time pion transition form factor, which describe the
interaction between a neutral pion and two off-shell photons in momentum space. It can be defined
as the following matrix element [6, 7]:

Mµν(q1,q2) =
∫

d4ue−iq1·u−iq2·v〈0|T{iJµ(u)iJν(v)}|π0(~p)〉

=
i

4π2Fπ

εµνρσ q1,ρq2,σ F(q2
1,q

2
2) (1.1)

where q1 and q2 are the photon momenta, and p = q1 + q2 is the on-shell pion momentum with
p2 =−m2

π , Jµ = ∑ f Q f ψ f γµψ f is the hadronic electromagnetic current, Fπ = 92.4 MeV is the pion
decay width at the physical pion mass. The lattice calculation of the pion transition form factor in
momentum space was well developed in Ref. [8]. What we study here is the three point correlation
matrix element before the Fourier transform, which is 〈0|T{iJµ(u)iJν(v)}|π0(~p)〉, where the two
photons locate in coordinate space. This matrix element can be computed directly on a lattice and
we can also examine the contributions to coordinate space form factor from different distances
of two currents. In this proceeding, we will discuss the formula of coordinate space form factor,
the relation between momentum and coordinate space form factor, how we parametrize it and the
lattice results.

2. Methodology

2.1 The coordinate space pion form factor

To construct coordinate space form factor, we firstly define a function

F ′(p · (u− v),(u− v)2)eip·v, (2.1)

where u and v denote the positions of two currents and p is the momentum of pion. By writing
momentum qρ to it’s correspond coordinate operator −i∂ρ from Eq.(1.1), the matrix element with
two photons in coordinate space becomes:

〈0|T{iJµ(u)iJν(v)}|π0(~p)〉= i
4π2Fπ

εµνρσ (−i∂ u
ρ )(−i∂ v

σ )
[
F ′(p · (u− v),(u− v)2)eip·v

]
. (2.2)

To get a formula in terms of pure coordinate spaces u and v, by applying a Fourier transform for
the component p · (u− v):

F ′(p · (u− v),(u− v)2) =
∫

∞

−∞

dxFc(x,(u− v)2)eixp·(u−v), (2.3)
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we can construct what we call the pion form factor in coordinate space, Fc, which depend on the
distance between the two currents and a factor x. We can prove that Fc(x,(u− v)2) will be vanish
when x < 0 or x > 1, and the final matrix element with the pion operator can be expressed as:

〈0|T{iJµ(u)iJν(v)}|π0(~p)〉=

〈0| i
4π2Fπ

εµνρσ

∫ 1

0
dx
[
−∂

u
ρ Fc(x,(u− v)2)

]
·
[
∂σ π

0(xu+(1− x)v)
]
|π0(~p)〉, (2.4)

where the properly normalized pion operator is defined as:

〈0|π0(x)|π0(~p)〉= eip·x. (2.5)

Eq.(2.4) imply that the behavior of two currents in coordinate spaces u and v can be thought as a
pion living along the line between the two positions.

2.2 Conversion to momentum space form factor

Since matrix element in coordinate space and in momentum space are connected by a Fourier
transform, we can also build a bridge from the coordinate space form factor to the momentum space
by insert Eq.(2.2) and Eq.(2.3) into Eq.(1.1), and it will show:

F(q2
1,q

2
2) =

∫
d4ue−iq1·u

∫ 1

0
dxFc(x,u2)eixp·u. (2.6)

It is also known that when two photons are on-shell, the pion decay width will lead F(q2
1→ 0,q2

2→
0) = 1. Because of this constraint, the coordinate form factor must satisfy the integral property:∫

d4u
∫ 1

0
dxFc(x,µ2)dx = 1. (2.7)

3. Lattice calculation setup and results

3.1 Parametrization

We parametrize the pion form factor in coordinate space with the help of operator product
expansion (OPE) [8], which refers to the expression of products of local operators at short distance.
For our case, when u and v are very close, we have such approximation:

T
{

ψ(u)ψ̄(v)
}
≈
∫ d4 p

(2π)4
eip·(u−v)

ipργρ +m

=
(u− v)ργρ

2π2((u− v)2)2 (3.1)

and

T
{[

iψ̄(u)γµψ(u)
][

iψ̄(v)γνψ(v)
]}

≈−
(u− v)ρ

2π2((u− v)2)2 ψ̄(u)γµγργνψ(v)−
(v−u)ρ

2π2((v−u)2)2 ψ̄(v)γνγργµψ(u)

=−
εµνρσ (u− v)ρ

2π2((u− v)2)2

[
ψ̄(u)γσ γ5ψ(v)+ ψ̄(v)γσ γ5ψ(u)

]
≈ i

4π2Fπ

εµνρσ 2(u− v)ρ

[2F2
π

3
1

((u− v)2)2

]
∂σ π

0
(u+ v

2

)
. (3.2)
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In the third line of Eq.(3.2), we use the definition of the pion form factor 〈0|ū(u)γσ γ5u(u)|π0(~p)〉=
Fπ pσ eip·u = 〈0|− iFπ∂σ π0(u)|π0(~p)〉. For now, comparing Eq.(2.4) and Eq.(3.2) and doing Fourier
series expension of Fc(x,(u− v)2) with the fact x ∈ [0,1], the parametrized coordinate space pion
form factor can be written as:

−∂
u
ρ Fc(x,(u− v)2) =2(u− v)ρ

[2F2
π

3
1

((u− v)2)2

]
×

∞

∑
n=0

fn(|u− v|)(2n+1)π
2

sin((2n+1)πx) (3.3)

and the realtive matrix element that will be computed in the lattice can also be parametrized:

〈0|T{iJµ(u)iJν(v)}|π0(~p)〉

=
i

4π2Fπ

εµνρσ 2(u− v)ρ

[2F2
π

3
1

((u− v)2)2

]
×

∞

∑
n=0

{
fn(|u− v|)(2n+1)

2

∫ 1

0
sin((2n+1)πx)eip·(xu+(1−x)v)dx

}
.

3.2 Study r Dependence of the Coordinate Space Form Factor

The coordinate space form factor Fc(x,(u− v)2) depend on the distance between two photons
and a factor x, which denote the pion position between the them. In this proceedings, we only focus
on the r dependence, where r = u− v. Let u = r/2, v =−r/2 and rt = 0, ~p = 0, and then we have
such matrix element which is in terms of r only:

〈0|T
{

iJµ(0,~r/2)iJν(0,−~r/2)
}
|π0(~p = 0)〉

=
i

4π2Fπ

εµνρσ 2rρ ipσ

[2F2
π

3
1

(|r|2)2

]
f (|r|), (3.4)

where f (|r|) is defined as

∫ 1

0
dx
[
−∂

u
ρ Fc(x,r2)

]
= 2rρ

[2F2
π

3
1

(|r|2)2

]
f (|r|) (3.5)

and that is

f (|r|) =
∞

∑
n=0

fn(|r|). (3.6)

f (|r|) must also follow the same constraint as in Eq.(2.7):

π2

2

∫
∞

0

2F2
π

3
f (|r|)2rdr = 1, (3.7)

raised from the pion decay width.

3
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3.3 Lattice Setup

We only consider the connected contribution to the three-point correlation function since the
Ref.[8] shows that the disconnected contribution is below 1% of the total contribution. The con-
nected contribution to the three-point correlation function reads:

Cconn
µν (r,~p, tπ) = ∑

|~r′|=r,~x

(
〈0|Jµ(0,~r′/2)Jν(0,−~r′/2)P+(tπ ,~x)|0〉× ei~p·~x

)
, (3.8)

where~r′ denotes the spacial distance between two currents, tπ is a fix distance between two currents
and pion in time direction and ~p = 0 to just study r dependence.

The lattice calculation is based on 243×64 ensemble with lattice spacing 1.015 GeV−1. The
lattice parameters are shown in Table 1. There are 1024 point source propagators are chosen ran-
domly in each configuration (256 random area groups are chosen from the lattice and 4 random
points in each group). To compute three-point correlation function, we find all the pairs of point
source propagators as the locations of two currents, which are chosen in the same time slices. Then
we sum over the spacial coordinates of pion with time separations tsep = 6 and 10 lattice spacing
between two currents and pion since we think these distances are long enough to create ground
state pion.

Table 1: Parameters of the 243×64 ensembles
Observable Fit % err.

amπ 0.13975(10) 0.07
amK 0.504154(89) 0.02
a fπ 0.13055(11) 0.09
a fK 0.15815(13) 0.09
ZA 0.73457(11) 0.02
Zπ

V 0.72672(35) 0.05
ZK

V 0.7390(11) 0.15

3.4 Results
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Figure 1: Left: r dependence of the coordinate space formulation f (r), and r is in lattice spacing. tsep

denotes the distance between two currents and pion. Right: Partial integration of f (r). The extrapolation in
long distance must be close to 1 to satisfy pion decay constraint.
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The lattice results of the r dependence of the coordinate space formulation f (r) are shown in
left figure in Fig.(1). Remember in Eq.(3.7) , f (r) must satisfy pion decay width when two photons
are on-shell. In right figure of Fig.(1), we can see the extrapolation of the partial integration of
π2

2
2F2

π

3 f (r)2r is around 1. To presume long distance behaviour of f (r), we use a formula to fit the
lattice result. The fitting formula reads:

ffit(r) = (c0 + c1r+ c2r2)e−0.77r, (3.9)

which is shown in Fig.(2). The partial integration of the fitting formula is shown in Fig.(2), in
which the constraint has been well satisfied.
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Figure 2: Left: The fitting plot of f (r) when tsep = 10. Right: The partial integration of the fitting formula.

3.5 Conclusions and acknowledgements

We have performed a calculation of r dependence of coordinate space pion form factor. We
developed a formula of coordinate space form factor, which shows that the behavior of two currents
in coordinate space can be thought as a pion living along the line between these two currents. The
lattice result also satisfy the pion decay width constraint.

We would like to thank our RBC and UKQCD collaborators for helpful discussions and sup-
port. We would also like to thank RBRC and BNL for BG/Q computer time. The CPS software
package is also used in the calculation. The computation is performed under the ALCC Program
of the US DOE on the Blue Gene/Q (BG/Q) Mira computer at the Argonne Leadership Class Fa-
cility, a DOE Office of Science Facility supported under Contract De-AC02-06CH11357. T.B is
supported by U.S. DOE grant.
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