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1. Introduction

As all lattice calculations of nucleon properties are subject to a trade-off between excited-state
contamination at short Euclidean times and a degrading signal-to-noise ratio at large Euclidean
times, the need for tamed excited-state effects is paramount. Perhaps the most notoriously contam-
inated signal in lattice calculations is that of the axial charge of the nucleon. The flavor non-singlet
axial vector current A3

µ = ψγµγ5
τ3

2 ψ between incoming and outgoing nucleons is expressible as

〈Ns′
(

p′
)
|A3

µ |Ns (p)〉= us′
N
(

p′
)[

γµγ5GA
(
q2)+ qµ

2MN
γ5GP

(
q2)+ i

σ µνqν

2MN
γ5GT

(
q2)] τ3

2
us

N (p)

(1.1)
where {s′,s} the polarizations, qµ = p′µ − pµ the momentum transfer, and GP

(
q2
)

and GT
(
q2
)

the induced pseudoscalar and tensor form factors. The forward limit, with qµ = 0, defines the
axial charge gu−d

A = GA (0); this simple definition has elevated its calculation to a benchmark quan-
tity. Recent work motivated by the Feynman-Hellman theorem [1] and high-statistics studies at
large source-sink separations [2, 3] have reconciled longstanding tension between the experimen-
tal and lattice determinations of gu−d

A . Nevertheless, it is curious that the bulk of lattice calcula-
tions routinely underdetermine the nucleon axial charge by ∼ 10−15%. The reader is referred to
[4, 5, 6, 7, 8, 9, 10] for recent calculations.

Systematic uncertainties in calculations of nucleon charges are predominantly due to the in-
ability of a lattice interpolating field to isolate the ground-state nucleon from its excitations and
multi-particle states of the same lattice quantum numbers. Spatial smearing and the variational
method are widely used techniques to overcome this hurdle. An alternative smearing algorithm
called “Distillation” [11] has garnered much attention in spectroscopy calculations for its utility
in efficiently identifying a plethora of hadronic states across a wide range of quantum numbers,
including some of hybrid nature. Motivated by this success, we explore the use of distillation in
the calculation of nucleon isovector charges gu−d

A and gu−d
T . A complete accounting of gu−d

S , gu−d
A

and gu−d
T can be found in [12].

We show distillation provides a significant reduction in statistical uncertainty and appears to
have a better control over excited-state effects in nucleon matrix elements, when compared to
local interpolators smeared in a conventional manner. The taming of excited-states aligns with
the construction of distillation as a low-mode projection of conventional smearing kernels, while
the improved systematics follows from distillation enabling explicit momentum projections at all
time slices in a correlation function. Construction of a suitable basis of distilled interpolators,
together with the variational method, illustrates further improvements in nucleon matrix elements
over standard smearing methods. A study of the spectra of the excited baryon states on this same
ensemble is presented elsewhere [13].

2. Smearing and Distillation

Spectral decompositions of momentum-projected two-point C2pt (t) = ∑~x e−i~p·~x〈O (~x, t)O (0)〉
and three-point C3pt (t,τ) = ∑~x,~y e−i~p′·~xei~q·~y〈O (~x, t)J (~y,τ)O (0)〉 functions demonstrate ground-
state hadronic properties are identified in the large-time regime (i.e. 0� τ � t) or with a judicial
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choice for O . Spatial smearing, such as Jacobi smearing, improves overlap of O onto low-lying
states via successive application of the kernel

(
1+σ∇2 (t)/nσ

)nσ to point-like quark/gluon fields.
Distillation is defined as a low-rank approximation to some gauge-covariant smearing kernel -

often the Jacobi-smearing kernel. By seeking solutions to −∇2 (t)ξ (k) (t) = λ (k) (t)ξ (k) (t), order-
ing solutions according to the magnitude of the eigenvalues, the distillation operator is constructed
as the outer-product of two eigenvectors on some time slice

�(~x,~y; t)ab =
N

∑
k=1

ξ
(k)
a (~x, t)ξ

(k)†
b (~y, t) , (2.1)

with color indices {a,b}. The components of a correlation function are constructed from

Solution vectors: S(k)
αβ

(
~x, t ′; t

)
= M−1

αβ

(
t ′, t
)

ξ
(k) (t)

Perambulators: τ
kl
αβ

(
t ′, t
)
= ξ

(k)† (t ′)M−1
αβ

(
t ′, t
)

ξ
(l) (t)

Elementals: Φ
(i, j,k)
µνρ (t) = ε

abc
(

D1ξ
(i)
)a(

D2ξ
( j)
)b(

D3ξ
(k)
)c

(t)Sµνρ

where Sµνρ are subduction matrices, M the Dirac operator, and Dn a covariant derivative acting on
the nth quark of the nucleon interpolator. We note here introduction of gauge-covariant derivatives
probes the radial/angular structure of the nucleon. Distillation factorizes quark propagation from
interpolator construction, allowing arbitrarily complicated interpolators to be correlated once a
single set of perambulators have been computed. Moreover, distillation ensures a greater sampling
of configurations via explicit momentum projection at source, sink, and insertion.

3. Lattice Parameters

Calculations were performed on a 323×64 lattice ensemble with an inverse coupling β = 6.3,
and 2+1 quark flavors described with the clover-Wilson fermion action. The needed two- and three-
point correlation functions were calculated on 350 configurations, separated by 10 updates in the
HMC algorithm. This lattice ensemble was found to have a lattice spacing of a = 0.09840(4) fm
via the Wilson-flow scale w0, yielding mπ = 356 MeV and mπL' 5.7.

In this work we study zero-momentum nucleons, polarized along the z-axis, interpolated from
the vacuum with four different types of operators - three distilled (two of which are supplemented
with the variational method) and one Jacobi-smeared interpolator. The simplest nucleon interpola-
tor consistent with the quantum numbers of the nucleon is

N (x) = ε
abc
[

ua> (x)C
(1± γ4)

2
γ5db (x)

]
uc

α (x) (3.1)

where C = γ2γ4 the charge conjugation matrix, {a,b,c} color indices, and α a free Dirac index. The
signal-to-noise ratio of the forward (backward) propagating states is improved following applica-
tion of the non-relativistic projector (1± γ4)/2. Sixty applications of the Jacobi-smearing kernel
(σ = 5.0) to N defines our Jacobi-smeared interpolator, which we refer to herein as “Jacobi-SS”.
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Projectors P2pt = (1+ γ4)/2 and P3pt = P2pt (1+ iγ5γ3) are needed to project onto the forward-
propagating positive-parity, z-polarized nucleon:

C2pt (t) = ∑
~x
〈P2pt

βα
Nα (~x, t)N β (0)〉 and C3pt (t,τ) = ∑

~x,~z
〈P3pt

βα
Nα (~x, t)Ou−d

Γ
(~z,τ)N β (0)〉

(3.2)
where Ou−d

Γ
is the isovector insertion. The sequential-source method is used in three-point calcu-

lations employing N , reducing distinct inversions of the Dirac operator.
We employ a distillation space of rank 64, with 10 iterations of stout smearing (ρi j = 0.08 and

ρµ4 = ρ4µ = 0) applied to the links on each time slice. The first distilled interpolator we consider is
referred to as the 2SS

1
2
+, the closest non-relativistic analogue of 3.1. Application of the variational

method to two different bases of distilled interpolators defines our final two interpolators:

B3 = { 2SS
1
2
+
, 4PM

1
2
+
, 4DM

1
2
+} −→ P̂3 (3.3)

B7 = { 2SS
1
2
+
, 2SM

1
2
+
, 2S′S

1
2
+
, 2PA

1
2
+
, 2PM

1
2
+
, 4PM

1
2
+
, 4DM

1
2
+} −→ P̂7. (3.4)

The reader is referred to [12] for explicit construction of these interpolators. Due to the high
Wick contraction costs of distillation, we applied the variational method to a correlation matrix of
two-point functions, fixing P̂3/7 for use in the three-point calculations. We note that 4PM

1
2
+ and

4DM
1
2
+ are explicitly of hybrid character - inspired by [14] where 2SS

1
2
+ and these hybrid operators

were found to have optimal overlap onto the ground-state nucleon.
Spectral decompositions of the projected correlation functions of Eqn. 3.2 show the correlators

behave as C2pt (t) = 2∑n |Zn|2 e−Mnt and C3pt
(
tsep,τ

)
=
(
|Z0|2

4M2
0
J00e−M0tsep + |Z1|2

4M2
1
J11e−M1tsep

)
+

Z0Z1
2M0M1

J01e−
(M1+M0)

2 tsep cosh
[
(M1−M0)

(
τ− tsep

2

)]
. Use of distilled interpolators introduces an over-

all factor of the lattice volume V3, due to a spatial sum at the source. We therefore perform simul-
taneous fits to our two-/three-point correlators

C2pt
fit (t) = e−M0t

[
|a|2 + |b|2 e−(M1−M0)t

]
(3.5)

C3pt
fit

(
tsep,τ

)
= e−M0tsep

(
A +Be−∆mtsep +C e−∆m tsep

2 cosh
[
(M1−M0)

(
τ− tsep

2

)])
(3.6)

to quantify the ground and first-excited state masses, overlap factors, and the desired ground-state
matrix element gΓ

00 = A /|a|2, while accounting for all correlations between our data.

4. Results & Discussion

Given the use of a single ensemble, we present only unrenormalized charges to demonstrate
the improvements afforded by distillation. We compute the two(three)-point correlation functions
averaged over three(one) source positions. The three-point functions are calculated for tsep ∈
{8,12,16}, with currents inserted for τ ∈

[
0, tsep−1

]
. We first judge the “quality” of an inter-

polator by plotting, as a function of the source-sink separation t, the effective mass Meff (t +0.5) =
(1/a) ln

[
C2pt (t)/C2pt (t +1)

]
.
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Figure 1: Nucleon effective mass when using
Jacobi-SS, 2SS

1
2
+

, P̂3 and P̂7 interpolators.

It is clear from Fig. 1, the use of distillation
affords plateaus in the nucleon effective mass
that begin for source-sink separations t ∼ 0.6 fm
and demonstrate roughly a factor of 2 improve-
ment in statistics - most notable is the reduction
in error for large Euclidean times. The applica-
tion of the variational method, as expected, leads
to a greater exponential decay of excited-states
at early Euclidean times, and an effective mass
plateau that begins one time slice earlier in the
case of P̂7. We attribute the increase in late-
time noise in P̂3 and P̂7, compared to 2S2

1
2
+,

to result from the elements of the correlation ma-
trix being dominated by noise at large source-
sink separations. For brevity we present results for the isovector charges where tfit

2pt ∈ [2,16] and
τfit ∈

[
2, tsep−2

]
. The reader is referred to [12] for a complete analysis of the dependence of our

results on the fitting windows chosen, as well as results for the scalar and vector charges, and a com-
plete listing of our fitted parameters. We define an effective charge geff

Γ
(t,τ) = C3pt

Γ
(t,τ)/C2pt

fit (t)
to quantify the amount of excited-state contamination, where C2pt

fit (t) is the best fit applied to the
two-point function and C3pt

Γ
(t,τ) the three-point function of the same source-sink separation and

interpolator constructions. The errors (gray) of our extracted isovector charges (black lines) are
estimated via a simultaneous jackknife resampling of the three-point correlator and two-point fit.

In figures 2 and 3 we display our calculated effective matrix elements, simultaneous fits, and
extracted isovector charges. Distillation appears to offer the combined benefit of improved statis-
tical precision and controlled excited-state effects in nucleon matrix elements, relative to Jacobi
smeared interpolators. Most notable are the broad, consistent plateaus that are present in the effec-
tive matrix elements calculated using distillation. Although the gains of the variationally-improved
distilled interpolators compared to the local distilled interpolator are less dramatic, the results are
no less significant as the effective matrix elements were found to be more consistent for different
tsep and required no additional Dirac inversions to do so. Having demonstrated the utility of distil-
lation in structure calculations, the next step in this program is to repeat this work for moving states
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Figure 2: Extracted and effective unrenormalized isovector axial charge using the Jacobi-SS (upper-left),
2SS

1
2
+

(upper-right), P̂3 (lower-left) and the P̂7 (lower-right).

Figure 3: Extracted and effective unrenormalized isovector tensor charge using the Jacobi-SS (upper-left),
2SS

1
2
+

(upper-right), P̂3 (lower-left) and the P̂7 (lower-right).

and generalize to off-forward scattering.
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