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Pion-pion scattering with physical quark masses
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We present preliminary results on the scattering of pseudoscalar, vector, and scalar mesons on a
physical pion mass, 2+1 flavor mobius-DWF, ensemble with periodic boundary conditions (PBCs)
generated by the RBC and UKQCD collaborations. Using all-to-all propagators, we produce thou-
sands of correlator momentum combinations. Energy spectra and phase shifts, including excited
states, are then extracted via the solutions of a generalized eigenvalue problem. Included in this
talk will also be an overview of the computational strategies employed, including a discussion
of split-CG matrix solvers (communication avoidance) and lattice crossing symmetry (momen-
tum combinatorics reduction). These studies are intended to serve as groundwork for a full PBC
calculation of direct CP violation in K->pipi later this year.
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1. Correlator Production

We use all-to-all propagators[?] (with nhits set of random sources) to calculate two-point func-
tions. We invert using a Zmobius (non-unitary) domain wall kernel on 185 configurations AMA
corrected with 7 configurations using a Mobius (unitary) kernel. These corrections have a very
small effect, most likely due to the 1e− 6 Zmobius stopping condition. We create and annhiliate
pions at an offset of 3 time slices to give smaller overlap with the vacuum. We refer to the source
pions which are closest to the sink (and vice-versa) in the forward time direction as inner pions.
tdis is the source sink separation between inner pions. We set a maximum tdis to save on compute
time. For the connected diagrams, we also only measure a source on every 8th time slice (the
disconnected diagrams dominate the noise so are measured on every time slice).

2. Production Parameters

3. GEVP, Operator Basis

We first form a matrix of two-point correlators whose dimensions are defined by the same
operator basis at source and sink. These operators are ππ operators with different energy overlaps.

For I = 0,2 we project onto the A1 irrep. For I = 1 we project onto the T−1 irrep. We include
operators with gamma structure ψγ5ψ,ψγµψ,ψψ which we refer to as the pion (π), ρ , and σ

operators respectively. Allowed individual 3-momenta of these operators goes up to ±(1,1,1) (±
all permutations of the magnitudes and signs are used in the projection: e.g. (1,−1,0),(0,−1,0),
etc.). We average over irrep rows and source time slice. We solve a generalized eigenvalue problem
(GEVP) for each separate isospin and center of mass momentum.

C(t)v(t, t0) = λ (t, t0)C(t0)v(t, t0) (3.1)

E =− 1
(t− t0)

log(λ (t, t0)) (3.2)

We include the backwards propagating contribution in our model for λ , but in practice this is
usually negligible since it is suppressed by e−ELt .

For I = 2, we fix t0 = t − 1 since this channel is not very noisy. For I = 0 we fix t0 =
⌈ t

2

⌉
as this is the earliest in time (and hence least noisy) time slice we can select which still gives us
the best known systematic asymptotic error bound[?] on our energies (which are extracted as E in
eq. (3.2)).

We calculate all elements of the GEVP matrix and enforce hermiticity by setting C(t) →
1
2

(
C(t)+C†(t)

)
. If we encounter imaginary eigenvalues (usually found at late times), we exclude

these time slices. If we encounter negative eigenvalues (which would not a give real log), we omit
these energies from our fits (but we may plot the remaining real energies). We do not truncate
the operator basis if we are doing a fit (although this can possibly allow us to extract some late
time information which would otherwise be inaccessible due to inherent numerical instability - see
section 9).
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Table 1: Production Parameters
Parameter Value

Lattice size 243 x 64 x 12
coarse grid block size 12 x 2 x 3 x 3 x 2

Spatial Boundary Conditions Periodic
Time Boundary Conditions Anti-periodic

nl 2000
nl, fine grid 1000

nhits 1
tsep 3
tstep 8

tdis max 16
pion radius 1.5
rho radius 1.5

sigma radius 1.5
Lt 64

beta 1.633
Ls (Zmobius approx of Mobius Ls=24, Shamir Ls=96) 12

Ms 0.0850
Mu 1.07e-03

# Configurations (sloppy only, no MADWF) 66
Nh 768

Random num type U(1)
M5 1.80

Gauge Iwasaki+DSDR
Gauge Fix Coulomb

Gauge Fix residual 1e-14 (see eq. 8 in [?])
Lanczos (true) rsd 1e-06

CG stop rsd 1e-08
CG method Single-prec, 400 iterations

Avg. CG True Resid 1e-06
RNG Seed (fixed to config number)

4. Lattice Spacing Corrections

We noticed significant discrepancies between the continuum dispersion relation
√

m2 + p2

and the fits to single pion correlators on this ensemble. Thus, it was necessary to provide a way to
correct our Eππ . We chose to add a correction defined by

Eπ1 +Eπ2−
√

m2
π + p2

1−
√

m2
π + p2

2

where p j =
2πn j

L are lattice momenta and Eπ j is a fit to a π constructed with this momentum.
For I = 0,1 channels, the presence of the σ ,ρ shift the energies away from their non-interacting

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
6
4

ππ Scattering Daniel Hoying

values (giving them quite large phase shifts). For these channels, an alternative dispersion relation
(guessed from naive scalar field theory) is used which gives good agreement with fits to Eπ :

Edisp =
√

m2 + p̂2

p̂≡ 2sin
(nπ

L

)
5. Other processing

For I = 0, we do a vacuum subtraction defined due to the existence of disconnected diagrams.

〈
OsnkO†

src
〉

sub ≡
〈
Osnk(t)O†

src(0)
〉
−〈O(t)snk〉

〈
O†

src
〉

We know we have around the world contributions to our energy eigenvalues. For moving
frames, these are also dependent on time separation. Each subtraction is defined by C(t)−C(t−δt)

with approriate weighting for the time dependence (see [?] for a much more detailed explanation).
We subtract up to and including second order in around the world contribution. We use a time
difference δt = 3 for each subtraction which is chosen to be the empirical minimum which has the
best noise properties. To be more explicit, if we start with δt = 1 or δt = 2 we can still significantly
reduce noise by going to δt = 3. Larger δt do not seem to do much to the noise levels. We did not
check this for every GEVP solve, but we did test it enough that it seems to be invariant under a
wide variety of inputs. It is an open problem to provide an explanation for this behavior.

Each time we perform a subtraction, we use δt time slices, so t shown often starts at 4 or 7
depending on if we are looking at the center of mass frame or some boosted frame.

Due to I = 1 providing asymmetry to the wave function, no around the world subtraction is
necessary for the center of mass frame.

6. Fitting

We fit under a jackknife the processed energy values simultaneously to N constants for an
NxN GEVP. It can be somewhat difficult to find a good subset of time slices to fit to, so we loop
over subsets pseudo-randomly (to avoid bias) until we get a decent fit. We then extend the time
slice inclusions as far as we can dimension by dimension (to minimize overfitting) until we get a
p-value for our χ2/do f which is > 0.1 (our arbitrarily chosen cutoff). Some fits clearly lack a very
stable plateau and we expect that fitting to a constant underestimates excited state contamination
especially in the higher energy states of I = 0,1. Even for I = 2, there are likely significant possible
improvements once we estimate this contamination (future work). For now, we estimate by eye
when we have a stable plateau. We use this estimation to set our tmin. For tmax, we exclude from our
fits any point which relative error > 20% (or where the GEVP has what appears to be numerical
instability causing sudden jumps in the energies and very large error bars on one or more states).
The points with large error bars do not do much to constrain the fit value and cause spurious
contributions of ∼ 1 to χ2/do f .

Scattering phase shifts are extracted via the Lüscher method via code derived from [?].
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7. I = 2 (Preliminary)

We plot here all the various center of mass momenta as well as a phenomenology (from Roy
equations) and chpt curves. The points discrepant might be due to unsubtracted around the world
contributions or lattice spacing errors. Excited state contamination is expected to lower the phase
shifts, so this effect must not be too large. Moreover different fit ranges give non-compatible results
(as expected if there was contamination). Work is ongoing to try to understand this dependence
(and the corresponding discrepancies with phenomenology). However, the ground states of the
various moving frames exhibit discrepancies which are fairly independent of fitted time slices (and
so may share a common origin).

7.1 Phase Shift vs.
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7.2 Representative Plot
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Energy[0] = 0.5344(12)
Energy[1] = 0.5967(12)
Energy[2] = 0.7724(30)
Energy[3] = 0.8003(30) 2/dof=1.3797, dof=15

4x4 GEVP, I2, , pCM = 011 exact matdt3, 3 185,7 configs
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8. I = 0 (Preliminary)

8.1 Representative Plot
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Energy[1] = 0.526(20)
Energy[2] = 0.82(89)

2/dof=1.0974, dof=5

3x3 GEVP, , , pCM = 000 t-t0=1 exact matdt1 185,7 configs

Disp(0.27893) Disp(0.59326) Disp(0.79127)

Figure 1: p0

√
s (MeV) Phase Shift (degrees)

277.0(1.2) N/A
534(21) 48(13)
833(908) -19(66)

Table 2: p0 Numerical Values, the ground state is below 2mπ in energy, so the phase shift is complex (and
omitted). We estimate excited state contamination for En by adding to our constant fit an extra exponential:
ame f f ,n = En + ane−(EN+1−En)t . We fix t − t0 = 1. For the ππ operators, we also add (from dispersion
relation) and subtract (from single π correlator squared) the free 2π energy in order to reduce noise.

9. I = 1 (Preliminary)

N.B. We have fewer configurations for I = 1: 155 with 7 used for the AMA correction. The
analysis is still in progress here, so we only show a non-fitted plot for illustration.

Also, we are employing two techniques to reduce the noise not used in the other isospins. The
first, as mentioned in section 3 is simply to delete operators at late times starting with the highest
ππ energy (ρ is the second to last to be eliminated). We also notice eigenvalues may switch
order from jackknife sample to jackknife sample (even if we sort them by size). This order switch
can be detected by checking the ordering to the corresponding eigenvectors (which are usually
more stable). We can create an identification of the eigenvectors (even over jackknife samples) by
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maximizing inner products with the eigenvectors found from the average correlator matrix 〈C(t)〉
(over jackknife samples).

However, due to time constraints, we do not have code to do this yet so we employ a slightly
older technique which has for ε � 1 (set to be as small as possible without causing precision loss)

C(t)→ (C(t)−〈C(t)〉)ε + 〈C(t)〉

E→ (E−〈E〉) 1
ε
+ 〈E〉

This introduces bias on the order of the jackknife bias (one can show) so can be considered safe
in regions where the error is small enough that the jackknife bias can be neglected. This technique
should give consistent results with the eigenvector identification method, but this has not yet been
checked. As this is mostly for illustration purposes, we assume that the errors are small enough to
make the technique reliable.

9.1 Representative Plot
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