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We present the results of our lattice QCD study of the πγ → ππ process, where the ρ resonance
appears as an enhancement in the transition amplitude. We use N f = 2+1 clover fermions on a
lattice of L = 3.6 fm and a pion mass of 320 MeV. Using a combination of forward, stochastic,
and sequential propagators, we calculate the two-point and three-point functions that allow us to
determine the πγ→ ππ matrix elements for several values of the invariant mass s and momentum
transfer q2. To fit the q2 and s dependence of the πγ → ππ amplitude, we explore a set of
general parametrizations based on a Taylor expansion. By analytic continuation to the complex
pole corresponding to the ρ resonance, we determine the resonant form factors and calculate the
radiative decay width of the ρ .
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1. Introduction

The spectrum of hadrons provides a unique connection between QCD and experiment. Many
experiments in hadron spectroscopy have utilized elastic and charge-exchange πN scattering, but
certain resonances are difficult to discern from this production mechanism, which leads to the
“missing resonance problem” in the spectrum of baryons [1]. Production processes other than
πN scattering allow us to better probe the spectrum of hadrons and increase our understanding
of the underlying physics [2]. One possible alternative production process that is being utilized
at modern-day facilities like JLab, ELSA, and MAMI is photoproduction. There, a photon is
absorbed on a stable hadron, like a proton, which is then excited into a resonance that decays to
various lighter hadrons. Recent theoretical developments [3, 4] now allow lattice QCD calculations
of the photoproduction of two-body resonances. However, as the baryon sector is very challenging,
it is helpful to first investigate the photoproduction of the simplest known resonance, the ρ meson.
Here, we give an overview of our lattice QCD calculation of this process [5].

2. Description of the photoproduction

Because the ρ is a resonance and thus not stable under the strong interaction, the photoproduc-
tion process πγ → ρ is obtained by analytical continuation of the more general process πγ → ππ

to the ρ pole. Here the ππ state is in P-wave, has isospin I = 1 and JPC = 1−−. The process
πγ → ππ is described by the infinite-volume matrix element 〈ππ|Jµ |π〉, which has the Lorentz
decomposition

〈ππ|Jµ(0)|π〉= 2iVπγ→ππ(q2,s)
mπ

ε
νµαβ

εν(P,m)(pπ)αPβ . (2.1)

Above, Vπγ→ππ is the transition amplitude, which depends on the momentum transfer q2 = (pπ −
P)2, P is the ππ-state four-momentum vector, pπ is the π-state four-momentum vector and εν(P,m)

is the ππ-state polarization vector. Further details on the states, their normalization and specific im-
plementations can be found in Ref. [5]. Near the ρ pole, sP = m2

R+ imRΓR, the transition amplitude
Vπγ→ππ takes the form

Vπγ→ππ(0,s)∼
Gρππ Gρπγ

sP− s
, (2.2)

where Gρπγ is the ρ resonance photocoupling and Gρππ is the coupling of the ρ to the ππ channel.
Making use of Watson’s theorem, the transition amplitude can be reformulated as

Vπγ→ππ(q2,s) =

√
16π

kΓ(s)
F(q2,s)

cotδ (s)− i
, (2.3)

where δ is the phase shift describing the strong ππ scattering. We investigate the two Breit-Wigner
forms described in Ref. [6], where BWI is the classic P-wave Breit-Wigner and BWII is modified
by a Blatt-Weisskopf barrier factor. For complete generality, the form factor F(q2,s) still carries an
s dependence, but it no longer has a pole in the s plane within the energy region of interest, below
the KK̄ threshold.
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3. Finite-volume matrix elements with lattice QCD

We use a single gauge-field ensemble with N f = 2+1 clover-Wilson fermions on a N3
s ×Nt =

323× 96 lattice. The lattice spacing determined from the ϒ(1S)-ϒ(2S) splitting with NRQCD is
a = 0.11403(77) fm. Our light-quark masses correspond to a pion mass of amπ = 0.18295(36).
Our calculation of the ρ resonance parameters using the Lüscher method in several moving frames
and irreducible representations can be found in Ref. [6]. To determine the finite-volume matrix
elements 〈π,~pπ |Jµ(0,~q)|n,~P, Λ, r〉FV , we calculate the three-point functions

C~pπ ,~P,Λ,r
3, µ,i (tπ , tJ, tππ) = 〈O~pπ

π (tπ)Jµ(tJ,~q)O
n,~P,Λ,r
i (tππ)〉

= ∑
n

Z~pπ

π Zn,~P,Λ†
i 〈π,~pπ |Jµ(0,~q)|n,~P, Λ, r〉FV ×

e−E~pπ
π (tπ−tJ)e−E

~P,Λ
n (tJ−tππ )

2E
~P,Λ
n 2E~pπ

π

, (3.1)

where i indexes the single- and two-hadron interpolating operators used to construct the ππ state
with JPC = 1−− and I = 1 [5]. The initial two-pion state has momentum ~P, is in the rth row of
the finite-volume irreducible representation Λ, and has energy E

~P,Λ
n and overlap factors Zn,~P,Λ

i . The
final state has momentum ~pπ and energy E~pπ

π with the overlap factor Z~pπ

π . The electromagnetic
current insertion Jµ = ZV (

1
3 ūγµu− 2

3 d̄γµd) is renormalized as described in Ref. [7]. The multi-
hadron three-point functions are a linear combination of the Wick contractions presented in Fig. 1
and are calculated with forward, sequential and stochastic propagators. We have checked that
the the current-disconnected diagrams are statistically compatible with 0 and omit them from our
construction. The three-point functions as written in Eq. (3.1) are still a sum over all states in the

(a)
Jµ

d̄Γiud̄γ5u

Jµ
(b)

d̄γ5u

ūγ5ud̄γ5u

(c) Jµ

d̄Γiud̄γ5u

(d) Jµ
ūγ5u

d̄γ5u

d̄γ5u

(e) Jµ
ūγ5u

d̄γ5u

d̄γ5u

(f) Jµ
ūγ5u

d̄γ5u

d̄γ5u

Figure 1: The different topologies of Wick contractions that make up the three-point function
C~pπ ,~P,Λ,r

3, µ,i (tπ , tJ , tππ). The current-disconnected diagrams a) and b) are not included in the construction of
the three-point functions.

ππ channel and need to be projected to the finite-volume states which have well-defined invariant
mass s and momentum transfer q2. We achieve this by making use of the generalized eigenvectors
vn~P,Λ

i (t0) from the variational analysis in Ref. [6], and construct the optimized three-point functions
[8, 9, 10]:

Ω
~pπ ,~P,Λ,r
3, µ,n (tπ , tJ, tππ , t0) = vn~P,Λ

i (t0)C~pπ ,~P,Λ,r
3, µ,i (tπ , tJ, tππ)

=

√
2E

~P,Λ
n eE

~P,Λ
n t0/2 Z~pπ

π 〈π,~pπ |Jµ(0,~q)|n,~P,Λ,r〉FV ×
e−E~pπ

π (tπ−tJ)e−E
~P,Λ
n (tJ−tππ )

2E
~P,Λ
n 2E~pπ

π

. (3.2)
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Here, the sum over all states n in the irreducible representation is reduced to a single term which
enables us to use all individual excited states within the energy region of interest to determine
the matrix element at as many points as allowed by the quark masses and volume of the gauge
ensemble.

The matrix elements 〈π,~pπ |Jµ(0,~q)|n,~P, Λ, r〉FV are determined using the ratio

R~pπ ,~P,Λ,r
µ,n (tπ , tJ, tππ) =

|〈π,~pπ |Jµ(0,~q)|n,~P, Λ, r〉FV |2

4E
~P,Λ
n E~pπ

π

(3.3)

=
Ω

~pπ ,~P,Λ,r
3, µ,n (tπ , tJ, tππ , t0)Ω

~pπ ,~P,Λ,r †
3, µ,n (tπ , t ′, tππ , t0)

C~pπ

π (∆t)λ
~P,Λ
n (∆t, t0)

, (3.4)

which depends on the optimized three-point functions as well as the two point functions.

4. Mapping to infinite volume

To obtain the infinite-volume matrix elements we follow the Briceño-Hansen-Walker-Loud
approach [3, 4], which is a generalization of the seminal work of Lellouch and Lüscher [11] and
allows us to utilize any gauge ensemble to study general transitions between single-hadron and
two-hadron states. The mapping in the case of πγ → ππ looks like

|〈π,~pπ |Jµ(0)|s,q2;~P, Λ, r〉IV |2
|〈π,~pπ |Jµ(0,~q)|n,~P, Λ, r〉FV |2

=
1

2E
~P,Λ
n

16π

√
s
~P,Λ
n

k
~P,Λ
n

(
∂δ

∂E
+

∂φ
~P,Λ

∂E

)∣∣∣∣
E=E

~P,Λ
n

, (4.1)

where φ
~P,Λ are the combinations of the finite-volume quantization condition (cf. Eq. 49 of Ref. [6])

and δ is the scattering phase shift as determined in Ref. [6]. We make use of two different
parametrizations of the scattering phase shift and perform the infinite-volume mapping for both.
The systematic uncertainties associated with the different choices in fitting the energies and matrix
elements are propagated to the final results.

5. The πγ → ππ amplitude

We build the transition amplitude Vπγ→ππ (see Eq. 2.3) from phase shifts BW I and BW II and
parametrize the transition form factor F with a two-dimensional Taylor series:

F(q2,s) =
1

1− q2

m2
P

∑
n,m

AnmznS m, (5.1)

where S =
s−m2

R
m2

R
, z =

√
4m2

π−q2−
√

4m2
π√

4m2
π−q2+

√
4m2

π

, and mR corresponds to the ρ resonance mass. Because we

neglect the current-disconnected diagrams, we also set mP = mR. We investigate three different
systematic truncations: F1) combined order K, ∑n+m≤K , F2) order N in z and combined order K,
∑

N
n=0 ∑

K−n
m=0, and F3) order N in z and order M in S , ∑

N
n=0 ∑

M
m=0. We present a three-dimensional

projection of the transition amplitude Vπγ→ππ for the chosen parametrization “BW II F1 K2” in
Fig. 2.
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Figure 2: A three-dimensional plot of Vπγ→ππ . The surface shows the central value of the nominal fit
function (“BWII F1 K2”). The lattice results are shown as the vertical bars, with the widths and depths
corresponding to the uncertainties. The magenta sections in the vertical direction cover the range from
Vπγ→ππ −σVπγ→ππ

to Vπγ→ππ +σVπγ→ππ
. Data points with larger uncertainties have reduced opacity.

6. Resonant form factor and photocoupling

The resonant form factor is determined by analytically continuing the transition form factor F
to the ρ pole:

Fπγ→ρ(q2) = F(q2, m2
R + imRΓR). (6.1)

At zero momentum transfer, q2 = 0, the resonant form factor becomes equal to the photocoupling
Gρπγ , which enters the formula for the ρ radiative decay width Γ(ρ → πγ):

Γ(ρ → πγ) =
2
3

α

(
m2

R−m2
π

2mR

)3 |Gρπγ |2
m2

π

. (6.2)

The left panel of Fig. 3 shows the resonant transition form factor as a function of momentum
transfer. The inner shaded region corresponds to the statistical and systematical errors and the
outer shaded region represents the model uncertainty, evaluated point-by-point as the root-mean-
square deviation of the other parametrizations from the nominal parametrization. The right panel
of Fig. 3 shows the photocoupling determined from those parametrizations that lead to a good
description of the data without redundant parameters. We find the ρ photocoupling at mπ ≈ 320
MeV to be: |Gρπγ | = 0.0802(32)(20). Because our lattice QCD calculation was performed at an
unphysical pion mass, our thresholds are much closer to the resonances than in nature and thus our
phase space is unphysical. However, if we assume the photocoupling to be pion-mass independent
and use the physical values of hadron masses to have the proper thresholds, we find the radiative
decay width Γ(ρ → πγ) = 84.2(6.7)(4.3)keV. The number in the first bracket represents the
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Figure 3: Left panel: Resonant transition form factor Fπγ→ρ as a function of momentum transfer. Right
panel: Absolute value of the photocoupling for the various parametrizations under consideration.

combined statistical and systematical uncertainty and the second uncertainty is associated with the
parametrization.

7. Conclusions

In this talk we presented a (2+ 1)-flavor lattice QCD calculation of the ρ photoproduction
process at mπ ≈ 320 MeV. Because at this light-quark mass the ρ is a resonance, we made use
of the the Briceño-Hansen-Walker-Loud formalism to calculate the general πγ → ππ transition
amplitude at many discrete points in the kinematic space of q2 and

√
s. Fitting a multitude of

parametrizations to the data and analytically continuing them to the ρ pole enabled us to determine
the ρ photocoupling and radiative decay width. Additional computations are needed to perform
the continuum extrapolation and the chiral extrapolation to the physical point, where direct com-
parisons with experimental data are possible. The methods used in this work are also applicable
to other electroweak processes with two hadrons in the final state, such as B→ ρ(→ ππ)`ν̄ and
B→ K∗(→ Kπ)`+`−.
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