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Elastic I = 1/2, s- and p-wave Kπ scattering amplitudes are simultaneously calculated using
a Lüscher style analysis on a single ensemble of dynamical Wilson-clover fermions at mπ ∼
230 MeV. Partial wave mixing due to the reduced rotational symmetries of the finite volume is
included up to `= 2. We also present finite-volume QCD spectra on two large anisotropic lattices
(323×256, 243×128) with mπ ∼ 230, 390 MeV respectively. In each symmetry channel, a large
basis of one- and two-hadron interpolating operators is employed with all-to-all quark propagation
treated using the stochastic LapH method.
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1. Introduction

As most excited hadrons appear as unstable resonances in experimental scattering cross sections,
to study such states, first-principles determinations of hadron-hadron scattering amplitudes in QCD
are desirable. Monte Carlo estimates in lattice QCD must be done in finite volume and using
imaginary time, so directly determining scattering amplitudes is not possible. Using a particularly
successful approach introduced by Lüscher, this difficulty can be circumvented by inferring infinite-
volume scattering amplitudes from interacting finite-volume energies [1]. Further developed in
Refs. [2, 3, 4, 5, 6, 7], among others, the method is now well established in the calculation of 2-to-2
scattering amplitudes. In this talk, a recent determination [8] of elastic Kπ scattering amplitudes
is presented, where the partial wave mixing due the the finite-volume is treated explicitly. Using
the procedure outlined in Ref. [7], s- and p-wave amplitudes are determined, the latter being
well-described by a Breit-Wigner form, as expected in the presence of a narrow K∗(892) resonance.

Above three-particle thresholds, the formalism for extracting scattering observables is maturing
(e.g., Refs. [9, 10]), with the first application to QCD appearing recently in Ref. [11]. As such,
understanding the resonant spectrum in this regime from first principles calculations remains a
challenge. The second half of this talk presents preliminary results from a qualitative determination
of the excited spectrum of QCD in a set of I = 1 bosonic symmetry channels. By employing large
bases of interpolating fields for single- and multi-hadron operators both the single-hadron dominated
states and states with significant mixing with multi-hadron operators can be disentangled.

2. Finite-volume spectrum determination

In order to extract the finite-volume spectrum in a given symmetry channel, the N×N ma-
trix Ci j(t) ≡ 〈Oi(t + t0)O j(t0)〉 of correlation functions is evaluated using the stochastic LapH
method [12]. By solving the generalised eigenvalue problem (GEVP)

C(td)v(t0, td) = λ (t0, td)C(t0)v(t0, td), (2.1)

for a single pair of diagonalisation times (t0, td), the diagonal elements of the ‘rotated’ correlation
matrix formed by the eigenvectors vn(t0, td)

C̃n(t) = (vn,C(t)vn), (2.2)

can be fit with single or multi-exponential fits to extract the N lowest energies in the spectrum. The
overlaps Zn

j = 〈0|O j|n〉 between the initial set of operators and the finite-volume eigenstates can
then be estimated. For the scattering amplitude analysis described in Sec. 3, as the signal of interest
is the deviation of two-particle energies from their non-interacting counterparts, the so-called ratio
fits of Ref. [13] are used.

3. Scattering amplitudes from finite-volume energies

Finite-volume energies are determined in the ‘lab’ frame in which the two-particle systems
may have non-zero total momentum. In the centre-of-mass frame we define for Kπ scattering the
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following kinematic quantities

Ecm =
√

E2−P2
tot, q2

cm =
1
4

E2
cm−

1
2
(m2

π +m2
K)+

(m2
π −m2

K)
2

4E2
cm

, (3.1)

where E is the lab frame energy determined above. The relationship between the two-particle
centre-of-mass energies and the infinite-volume scattering amplitude can be expressed as [7]

det[K̃−1(Ecm)−B(Λ,d)(Ecm)] = 0, (3.2)

which holds up to exponentially suppressed corrections in the spatial extent L. K̃−1 and B are infinite-
dimensional matrices in partial wave `, and are real and symmetric, and Hermitian respectively,
ensuring the determinant itself is real for real q2

cm. Expressions and software for numerical evaluation
of the B-matrix elements are provided in Ref. [7]. For the scattering of spinless particles, following
the convention of Ref. [8],

K̃−1
` (Ecm)≡

(
qcm

mπ

)2`+1

K−1
` (Ecm) =

(
qcm

mπ

)2`+1

cotδ`(Ecm), (3.3)

is expected to be smooth near the elastic threshold. In the determinant condition in Eq. (3.2),
partial wave mixing due to the reduced symmetry of the cubic finite-volume must be treated with
care. In order to proceed with a practical computation, some truncation in ` is required. For a
one-dimensional B, the determinant condition is, of course, trivial, yielding a one-to-one relationship
between a finite-volume energy Ecm and an amplitude point K̃−1(Ecm). Here, however, as we
consider `≤ 2, a parametrisation of each partial wave in K̃−1 is required with some number of fit
parameters.

Irreps of the appropriate little group for various total momenta used in the Kπ scattering
analysis are listed in Table 1. While there are a number of irreps in which the `= 1 partial wave
can be isolated, it is only the A1g irrep at zero total momentum where `= 0 amplitude points can be
unambiguously obtained. Hence, we determine both amplitudes simultaneously in the elastic region
using the determinant residual method of Ref. [7].

d Λ `

(0,0,0) A1g 0, 4, . . .
T1u 1, 3, . . .

(0,0,n) A1 0, 1, 2, . . .
E 1, 2, 3, . . .

d Λ `

(0,n,n) A1 0, 1, 2, . . .
B1 1, 2, 3, . . .
B2 1, 2, 3, . . .

(n,n,n) A1 0, 1, 2, . . .
E 1, 2, 3, . . .

Table 1: Irreps Λ of the appropriate little group for various total momenta Ptot = (2π/L)d (where d is a
vector of integers) considered in this work. We consider Kπ systems at rest as well as those with non-zero
total on-axis, planar-diagonal, and cubic-diagonal momenta. These momentum classes are listed in the first
column, where n ∈ Z.
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4. Results: Kπ scattering amplitudes

Based on the expectation of a narrow K∗(892) resonance, the p-wave amplitude is well
parametrised by a relativistic Breit-Wigner. For the s-wave amplitude we employ a variety of
fit forms including generic linear and quadratic functions of Ecm, motivated by analyticity of
K̃−1(Ecm) at threshold in Ecm and s = E2

cm respectively. Additionally, we consider the NLO effective
range expansion and an s-wave relativistic Breit-Wigner to parametrise the amplitude. As a test
of the validity of the truncation in `, the K̃- and B-matrices are also enlarged to include d-wave
contributions that we parametrise with the leading-order effective range expansion. Explicit expres-
sions are provided in Ref. [8]. Simultaneous fit results from a single anisotropic ensemble with
N f = 2+1 clover-improved Wilson fermions, (323|230), with mπ ∼ 230 MeV are listed in Table 2.
It is apparent that the K∗(892) resonance parameters are insensitive to s-wave parametrisation and
the inclusion of d-wave mixing. The amplitudes from fit 2 are shown in Fig. 1, together with the
Breit-Wigner s-wave amplitude from fit 5, illustrating that different parametrisations for the s-wave
produce a similar energy dependence in the elastic region. In addition to the fits, points from irreps
without `= 0,1 partial wave mixing are shown and seen to be consistent with the fit ansätze.

In the energy range in which we have determined the s-wave amplitude, some hint of the
K∗0 (800) may be expected to appear. From the LO effective range expansion, mπa0 < 0 suggests
a virtual bound state. However, as the ratio 1−2r0/a0 must be positive in the presence of a (real
or virtual) bound state, using the NLO effective range parameters from fit 3 gives 1− 2r0/a0 =

−8.9(2.4). At the 3−4σ level then, we do not see any near-threshold bound state.
A careful analytic continuation, presumably requiring a better energy resolution than we have

here, is needed to establish the existence of a K∗0 (800) resonance pole above threshold on the
second (unphysical) Riemann sheet. Nevertheless, we can obtain qualitative information about a
possible s-wave pole by finding the zeros of qcm cotδ0− iqcm. This is easily done using the NLO
effective range parametrization of fit 3 and solving the resultant quadratic polynomial, yielding
mR/mπ = 4.66(13)−0.87(18)i which is consistent with the Breit-Wigner mass and width from fit
4, which gives mK∗0/mπ = 4.59(11) and gK∗0 Kπ = 3.35(17). It is important to remember here that in
addition to the K∗0 (800), the s-wave amplitude may also be influenced by the K∗0 (1430) resonance.
Without a full analytic continuation we can only infer qualitative information about a possible
s-wave resonance pole from the elastic `= 0 amplitude calculated here.

Fit s-wave par. mK∗/mπ gK∗Kπ mπa0 χ2/d.o.f.

1 LIN 3.810(18) 5.30(19) −0.349(25) 1.49
2 QUAD 3.810(18) 5.31(19) −0.350(25) 1.47
3 ERE 3.809(17) 5.31(20) −0.351(24) 1.47
4 BW 3.808(18) 5.33(20) −0.353(25) 1.42
5 BW 3.810(17) 5.33(20) −0.354(25) 1.50

Table 2: Results for the K∗(892) resonance parameters and the s-wave scattering length mπ a0 from all fits
to the amplitudes. For each fit, the p-wave amplitude is described using a relativistic Breit-Wigner. Fit 5
includes d-wave contributions as discussed in the text.
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Figure 1: K-matrix fits to the s- and p-wave amplitudes as a function of Ẽ = (Ecm−mK)/mπ such that the
elastic region of interest extends over 1 < Ẽ < 2. Together with the fits, which are explained in the text, we
show amplitude points (neglecting d-wave contributions) from irreps with no mixing between s- and p-wave.
All energies involved in the fit are indicated below the plots where they are offset vertically for clarity.

5. Results: excited meson spectroscopy

On two anisotropic ensembles (323|230), (243|390), with mπ ∼ 230,390 MeV respectively, we
consider all isovector, non-strange, bosonic channels with negative parity and positive G-parity. In
the interest of brevity, preliminary results are presented here for the resonance-rich T+

1u channel in
which spin-1 and spin-3 states are expected to appear. In this symmetry channel we use a carefully
selected set of 73 operators, 9 of which are so-called optimised single-hadron (SH) operators
resultant from a preliminary GEVP using only SH operators chosen with care to best produce the
expected spin-1 and spin-3 states in this channel. The remaining 64 two-hadron (MH) operators
are chosen guided by the spectrum of all possible two-hadron states in the T+

1u symmetry channel
assuming no interactions between the particles. Optimal interpolators for the expected hadronic
states are chosen based on preliminary low-statistics runs and are described in detail in Ref. [14].

Using the Z overlaps for each operator onto the finite-volume energy levels, level identification
can be performed based on the structure of the judiciously chosen probe operators. QCD being
a complicated interacting quantum field theory makes this characterisation of stationary states
difficult and largely qualitative. Nevertheless, we are well able to identify the stationary states
expected to evolve into the single-meson resonances that correspond to quark-antiquark excitations
in infinite-volume. For mπ ∼ 230 MeV a staircase plot summarising the T+

1u finite-volume spectrum
is shown in Fig. 2. In Fig. 3 we see that many more resonant states are seen in experiment than in our
finite-volume calculation. There are multiple possible explanations for this, for example some states
from experiment may not be simple quark-antiquark excitations but more exotic molecular states
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that would not be clearly identified by our SH probe operators. More interesting however is the
number of quark-antiquark identified stationary states found when considering only SH operators
versus when mixing with MH operators is included. The appearance of an additional state in the
energy range shown suggests that mixing between quark-antiquark excitations and two-hadron states
is crucial for the reproduction of some states seen in experiment. Further investigation is required,
with a finite-volume Hamiltonian based analysis for qualitatively describing the stationary state
spectrum in progress. Note that we have not included any three- or four-particle interpolators despite
going above the thresholds for creating such states.
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Figure 2: First 63 excited states in the isovector, non-strange T+
1u channel with mπ ∼ 230 MeV. Levels with

maximal overlap onto the optimised single hadron (SH) and two-hadron operators (MH) are indicated by
solid blue and cyan boxes respectively. Spectrum extracted using multi-exponential fits to diagonal elements
of Eq. (2.2) from a GEVP with 73 operators (9 SH + 64 MH).
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