
P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
7
7

Relation between scattering amplitude and
Bethe-Salpeter wave function in quantum field
theory

Takeshi Yamazaki∗a,b† and Yoshinobu Kuramashib

aFaculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
b Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

We discuss an exact relation between the two-particle scattering amplitude and the Bethe-Salpeter
(BS) wave function inside the interaction range in quantum field theory. In the relation the reduced
BS wave function defined by the BS wave function plays an essential role. Through the relation
the on-shell and half off-shell amplitudes can be calculated. We also show that the solution of
Schrödinger equation with the effective potential determined from the BS wave function gives
a correct on-shell scattering amplitude only at the momentum where the effective potential is
determined. Furthermore we discuss a derivative expansion of the reduced BS wave function
and a condition to obtain results independent of the interpolating operators in the time-dependent
HALQCD method.
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1. Introduction

The finite volume method [1, 2] is utilized in various lattice studies for hadron scatterings.
In the method the scattering phase shift δ (k) is evaluated from the finite volume formula. The
formula relates δ (k) in the infinite volume to the relative momentum of two particles k2 on finite
volume. The derivation of the formula was based on a relation between the two-particle wave
function outside the interaction range R and δ (k) in quantum mechanics [2]. The same formula
was obtained from a similar discussion with the Bethe-Salpeter (BS) wave function in quantum field
theory [3, 4]. The relation between the BS wave function outside R and the scattering amplitude is
well understood in the finite volume method.

On the other hand, the relation between the BS wave function inside R and the scattering
amplitude is not well known. Only the HALQCD method [5] was proposed based on a discussion in
quantum mechanics, which is a method to evaluate δ (k) with an effective potential determined from
the BS wave function inside R. In lattice QCD calculation of the two-nucleon channels, HALQCD
method and the direct calculation of bound state energy give qualitatively different results. The
reason of the inconsistency has not been understood at present, though several possible reasons are
suggested.

In this report, we discuss an exact relation between the BS wave function inside R in the infi-
nite volume and the on-shell scattering amplitude in quantum field theory. Based on this relation,
we show that the correct scattering phase shift is obtained from the effective potential only at the
momentum where the effective potential is determined. At other momenta, however, the scatter-
ing amplitude obtained from the effective potential disagrees with that from the exact relation.
Furthermore, we discuss a derivative expansion of the potential and a condition to obtain results
independent of the interpolating operators in the time-dependent HALQCD method [6]. These dis-
cussions could be useful to understand property of hadron scatterings and also the inconsistency
between the two methods in the two-nucleon lattice QCD calculations. All the results in this report
have been already published in the two papers [7, 8].

2. BS wave function inside interaction range

In this report, we follow the definitions in Refs. [3, 4]. We consider an S-wave scattering of
distinguishable spinless particles. The relative momentum of the two particles k is determined from
the two-particle energy 2Ek = 2

√
m2 + k2 where m is the mass of the particles. The energy is below

the inelastic threshold 2Ek ≤ 4m. The BS wave function of the two-particle in the infinite volume
is defined by

ϕ (⃗x;⃗k) = ⟨0|π1(⃗x/2)π2(−⃗x/2)|π̂1(⃗k)π̂2(−⃗k); in⟩, (2.1)

where πi is an interpolating operator of the i-th scalar particle (i = 1,2), and |π̂1(⃗k)π̂2(−⃗k); in⟩ is
an asymptotic two-particle state with the relative momenta k⃗ and −⃗k. We omit t dependence of
ϕ (⃗x;⃗k), because it can be expressed by an overall factor ei2Ekt .

Through the LSZ reduction formula, ϕ (⃗x;⃗k) is written by the half off-shell scattering amplitude
H(p;k) [3, 4] with k = |⃗k| as

ϕ (⃗x;⃗k) = ei⃗k·⃗x +
∫ d3 p

(2π)3
H(p;k)

p2 − k2 − iε
eip⃗·⃗x. (2.2)
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In this expression, unnecessary overall factors are ignored. H(p;k) is defined in the LSZ reduction
formula, which is given by the Fourier transformation of the four-point Green function as,

e−iq·x −i
√

Z
−q2 +m2 − iε

8EpEk

Ep +Ek
H(p;k) =∫

d4zd4y1d4y2K(p,z)K(−k1,y1)K(−k2,y2)⟨0|T [π1(z)π2(x)π1(y1)π2(y2)|0⟩, (2.3)

where K(p,z) = ieip·z(−p2 +m2)/
√

Z, with Z the renormalization factor of the operator πi. The
bold faced momenta and coordinates are four-dimensional vectors. Three of the four momenta,
p,k1, and k2, are on-shell, while q = (2Ek −Ep,−p⃗) is generally off-shell. The on-shell scattering
amplitude H(k;k) is written by δ (k) as

H(k;k) =
4π
k

eiδ (k) sinδ (k). (2.4)

In the S-wave BS wave function ϕ(x;k), the first term in Eq. (2.2) is replaced by its S-wave com-
ponent j0(kx) which is the spherical Bessel function of l = 0.

We define the reduced BS wave function given by ϕ(x;k) as,

h(x;k) = (∆+ k2)ϕ(x;k). (2.5)

An important assumption of h(x;k) is that h(x;k) = 0 in the outside region of the interaction range
R except for the exponential tail. This property is similar to a potential in quantum mechanics.
Using Eq. (2.2) we can see that h(x;k) is directly related to H(p;k) as

h(x;k) =−
∫ d3 p

(2π)3 H(p;k)eip⃗·⃗x. (2.6)

The Fourier transformation of h(x;k) gives the half off-shell amplitude,

H(p;k) =−
∫

d3xh(x;k)e−ip⃗·⃗x. (2.7)

At the on-shell p = k, the scattering phase shift δ (k) is obtained from the on-shell scattering am-
plitude H(k;k) as,

H(k;k) =−
∫

d3xh(x;k)e−i⃗k·⃗x =
4π
k

eiδ (k) sinδ (k), (2.8)

where Eq. (2.4) is used in the last equality. This is an exact relation between the BS wave function
inside R and the on-shell scattering amplitude in quantum field theory, because h(x;k) given by
ϕ(x;k) has non-zero value only in the inside region of the interaction range. We will call the
relation the fundamental relation in this report. The fundamental relation insists that h(x;k) plays
an essential role to calculate δ (k) in quantum field theory, when we use the BS wave function
inside R. Although this relation is not explicitly written, it was used to show the relation between
δ (k) and ϕ(x;k) in x > R in Ref. [4]. One can extend the formula to the one on finite volume. The
first calculation for the on-shell and half off-shell scattering amplitudes with the extended formula
was reported in Ref. [9].
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3. Fundamental relation in quantum mechanics

In this section we will compare the on-shell scattering amplitudes obtained from the funda-
mental relation and the one from the solution of Schrödinger equation with an effective potential
given by the BS wave function.

We define the effective potential V (x;k) by h(x;k) and ϕ(x;k) [4] as,

V (x;k) =
1
m

h(x;k)
ϕ(x;k)

(x ≤ R). (3.1)

We assume V (x;k) = 0 in x > R. V (x;k) may diverge, if ϕ(x;k) has a node in x ≤ R.
In the leading order HALQCD method [5], V (x;k) is regarded as a potential in quantum

mechanics. In the method the scattering phase shift δ (p) is determined from the solution of
Schrödinger equation with a given momentum p (in general p ̸= k) below the threshold. Schrödinger
equation is given by

(∆+ p2)ϕ(x; p) = 2µV (x;k)ϕ(x; p), (3.2)

where ϕ(x; p) is the solution and µ is the reduced mass µ = m/2.
As explained in textbook of quantum mechanics (see for example Ref. [10]), the scattering

amplitude f (p) is obtained from Schrödinger equation Eq. (3.2) as

f (p) =−2µ
4π

∫
d3xV (x;k)ϕ(x; p)e−ip⃗·⃗x =− 1

4π

∫
d3x

h(x;k)
ϕ(x;k)

ϕ(x; p)e−ip⃗·⃗x, (3.3)

where the definition of V (x;k) Eq. (3.1) is used in the last equality. In the equation, it is assumed
that f (p) can be also written by δ (p) as

f (p) =
eiδ (p) sinδ (p)

p
. (3.4)

In the following, we compare the scattering phase shifts obtained from Schrödinger equation and
the fundamental relation, δ (p) and δ (p), in two cases: p= k and p ̸= k, since the effective potential
V (x;k) is defined at k as in Eq. (3.1).

At p = k, the above Schrödinger equation reduces to the definition of h(x;k) in Eq. (2.5).
In this case ϕ(x;k) = ϕ(x;k) in Eq. (3.3). Thus, f (k) in Eq. (3.3) is written by δ (k) using the
fundamental relation Eq. (2.8) as,

f (k) =− 1
4π

∫
d3xh(x;k)e−i⃗k·⃗x =

1
4π

H(k;k) =
eiδ (k) sinδ (k)

k
. (3.5)

Comparing the result with f (k) in Eq. (3.4), it is confirmed δ (k) = δ (k). Therefore, the same
scattering phase shift is obtained from Schrödinger equation and the fundamental relation at the
momentum k where V (x;k) is defined.

On the other hand, in the p ̸= k case, the two scattering phase shifts do not agree. It is because
generally ϕ(x; p) ̸= ϕ(x;k) in this case.
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4. Expansion of reduced BS wave function

The reduced BS wave function h(x;k) is expanded by derivatives in HALQCD method [5] as,

h(x;k) =
∞

∑
n

Vn(x)∆nϕ(x;k). (4.1)

The expansion coefficient Vn(x) is independent of k, if the number of the term in the expansion is
infinite [11].

In practical calculation, the expansion is truncated to some order. In this case the convergence
of the expansion is unclear, because it is not a systematic expansion. Furthermore Vn(x) depends
on k in contrast to the expansion with the infinite terms. In the next section we will discuss un-
certainties caused by the truncation in the time-dependent HALQCD method [6], because the k
independence of Vn(x) is a theoretical base of the method.

It is easy to see the k dependence of Vn(x). For example, when the expansion is truncated to
the two terms, h(x;k) is given by

h(x;k) = V0(x)ϕ(x;k)+V1(x)∆ϕ(x;k) (4.2)

= V0(x)ϕ(x;k)+V1(x)(h(x;k)− k2ϕ(x;k)). (4.3)

The definition of h(x;k) in Eq. (2.5) is used in the last equality. By solving simultaneous equations
with given h(x;k) and ϕ(x;k) at two momenta, one can see that V0(x) and V1(x) depend on the two
momenta. The obtained coefficients give the correct h(x;k) at the two input momenta, while they
do not in other momenta. This is similar to the situation of the effective potential as discussed in the
previous section. The effective potential is determined from h(x;k) and ϕ(x;k) at one momentum
k, so that the correct scattering amplitude is obtained only at k.

5. Truncated expansion in time-dependent HALQCD method

The time-dependent HALQCD method [6] was proposed based on the derivative expansion to
obtain k independent Vi(x) by solving simultaneous equations of two-particle correlation functions
on the lattice. As discussed in the previous section, such Vn(x) cannot be obtained in practical
calculation. In this section we discuss a condition to obtain Vn(x) that do not depend on the choice
of the interpolating operators.

The correlation function on the lattice Cn(x, t) is expanded by the two-particle states with the
discrete momentum kα as,

Ci(x, t) = ⟨0|π(x, t)π(0, t)Ωi|0⟩=
Nα

∑
α=0

Aiα(t)ϕα(x), (5.1)

where ϕα(x) corresponds to ϕ(x;kα) and Aiα(t) = Biαe−Eα t with Biα = ⟨ππ;kα |Ωi|0⟩ and E2
α =

4(m2 + k2
α). Ωi (i = 0, · · · ,NΩ) is the i-th two-particle operator at t = 0. We assume that Nα + 1

states contribute to Ci(x, t) in the t region. The number of the states decreases as t increases, because
contributions of higher energy states are exponentially suppressed by t. The sum of the reduced BS
wave function hα(x) = h(x;kα) is obtained from Ci(x, t) as

(∆+ f (t,m))Ci(x, t) =
Nα

∑
α=0

Aiα(t)hα(x), (5.2)
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where f (t,m) satisfies f (t,m)Aiα(t) = k2
αAiα(t).

The time-dependent HALQCD method employs the truncated expansion using N derivatives
with k independent Vn(x), although the truncation causes the k dependence of Vn(x) as explained in
the previous section. Thus, the right-hand side of Eq. (5.2) is given by

Nα

∑
α=0

Aiα(t)hα(x) =
Nα

∑
α=0

Aiα(t)
N

∑
n=0

Vn(x)∆nϕα(x) =
N

∑
n=0

Vn(x)∆nCi(x, t), (5.3)

where the summations for α and n are exchanged in the last equality because of the k independence
of Vn(x). For convenience, we define matrices A(t) and M(x, t) and vectors h(x) and V (x), whose
components are Aiα(t), Min(x, t) = ∆nCi(x, t), hα(x), and Vn(x), respectively. Using the matrices
and vectors, Eq. (5.4) is expressed by

M(x, t)V (x) = A(t)h(x). (5.4)

In order to solve the simultaneous equations Eq. (5.4), the inverse of M(x, t) is calculated in
N = NΩ. Thus, V (x) is given by

V (x) = (M(x, t))−1A(t)h(x). (5.5)

Since A(t) depends on the operators, A(t) should vanish to obtain operator independent Vn(x).
However, if Nα ̸= N, A(t) does not vanish, because A(t) does not have an inverse. (M(x, t))−1

cannot be decomposed into two inverse matrices for A(t) and Φ(x), where Φαn(x) = ∆nϕα(x). In
this case V (x) is a function of Anα(t),hα(x), and ∆nϕα(x), so that Vn(x) depends on the choice of
the interpolating operator in Ci(x, t).

On the other hand, in the case of Nα = N, A(t) disappears as,

V (x) = (M(x, t))−1A(t)h(x) = (Φ(x))−1h(x). (5.6)

Therefore, Nα = N is a condition to obtain the operator independent Vn(x) from the time-dependent
HALQCD method.

In order to satisfy Nα = N, in general Cn(x, t) in a large t region is necessary, where higher
energy states than the Nα + 1 states must be sufficiently suppressed. It might be also possible to
adopt operators which strongly couple to the states of α = 0, · · · ,Nα . These conditions are the
same as in the generalized eigenvalue problem [12] to obtain the two-particle energies. In the time-
dependence HALQCD method the condition may be more severe, because it must be satisfied in
all x.

Even if the operator independent Vn(x) is obtained, it gives the correct hα(x) only in the mo-
menta kα , because Vn(x) should have the momentum dependence due to the truncation of the deriva-
tive expansion. However, the momenta cannot be determined from the time-dependent HALQCD
method, so that other method is required to specify the momenta where the correct scattering am-
plitudes are obtained.

6. Summary

We have presented an exact relation between the BS wave function inside the interaction range
and the scattering amplitude in quantum field theory. This relation gives not only the on-shell
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amplitude but also the half off-shell amplitude. The reduced BS wave function plays an essential
role in the relation, which is defined by the BS wave function.

Using the relation, we have presented that Schrödinger equation with the effective potential
determined from the reduced BS wave function gives the same scattering phase shift as in quantum
field theory only at the momentum where the effective potential is defined. In other momenta the
two scattering phase shifts differ in general.

We have also discussed that the truncated expansion of the reduced BS wave function causes
the momentum dependence of the expansion coefficients. Furthermore it is discussed uncertainties
caused by the truncation in the time-dependent HALQCD method and a condition to obtain results
independent of the interpolating operators.

These discussions could be helpful to understand the current situation of the two-nucleon
calculations in lattice QCD.
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