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1. Introduction

Lattice simulation is a substantial technique for an understanding of hadrons quantitatively

from the first principle of QCD. Lattice QCD provides scattering information, such as the scattering

length a0, the effective range reff, and the scattering phase shift δ (k) itself. The recent lattice QCD

results are reviewed in Ref. [1].

A conventional lattice QCD approach to the scattering information utilizes the finite volume

formula and its extensions, originally proposed by M.Lüscher [2]. The formula describes a relation

between two-hadron energy in a finite box and δ (k) in the infinite volume by an analytic function.

In quantum field theory, this formula is derived using the Bethe-Salpeter (BS) wave function outside

the two-hadron interaction range R [3, 4]. A method to obtain a potential from Schrödinger-type

equation by the BS wave function is also suggested [5].

An associated issue is raised in the infinite volume, which connects the BS wave function

inside R and the on-shell scattering amplitude [3, 4, 6]. This issue motivates us to perform a

lattice QCD simulation for scattering amplitudes from the BS wave function inside R [7]. The

simulation employed the isospin I = 2 S-wave two-pion system at the pion mass mπ = 0.86 GeV

in the quenched QCD. Our result of the on-shell amplitude confirmed consistency between the

finite volume method and our approach. We also obtained the half-off-shell scattering amplitude

successfully by lattice QCD. It is not observable in experiments, but it provides additional input for

hadron effective theories and models, complementary to the experimental data. Furthermore, we

can extract the effective range from the half-off-shell scattering amplitude under two assumptions.

In this proceedings, we investigate the quark mass dependence of the scattering amplitudes.

Chiral extrapolations are performed with data ranged in mπ = 0.52−0.86 GeV at the lattice spacing

of a−1 = 1.207 GeV. We confirm consistency between the previous result by the conventional finite

size formula and our result at each simulation point and at the physical point. Comparison with the

phenomenological value is also exhibited.

2. Formulation on the lattice

We employ the notation in our previous paper [7], following Refs. [3, 4, 6]. The BS wave

function of I = 2 two pions on the lattice φ(x;k) is extracted from the two-pion four-point function,

〈0|Φ(x, t)|π+π+,Ek〉=Ckφ(x;k)e−Ekt + · · · , (2.1)

where · · · are excited state contributions. Ck is an overall constant. Ek = 2
√

m2
π + k2 is the two-

pion energy. |π+π+,Ek〉 is a ground state of two pions. Φ(x, t) is a two-pion operator defined

by Φ(x, t) = ∑r π+(RA+
1
[x] + r, t)π+(r, t), using a single pion interpolating operator, π+(x, t) =

d̄(x, t)γ5u(x, t). A+
1 projection RA+

1
[x] is applied to obtain the S-wave scattering at the center of

mass. Contribution from higher angular momentum l ≥ 4 is also involved, but negligible.

Once φ(x;k) is calculated, the reduced BS wave function h(x;k) can be determined by

h(x;k) = (∆+ k2)φ(x;k), (2.2)

where the symmetric lattice laplacian is used, ∆ f (x) = ∑3
i=1( f (x+ î)+ f (x− î)− 2 f (x)). It can

be also formulated in the momentum space, as is often employed in the continuum theory [8]. We

numerically confirmed both approaches give a consistent result.
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The key property of h(x;k) is that outside the interaction range of the two-pion R,

h(x;k) = 0 for x > R, (2.3)

where the exponential tail is supposed to be tiny. If R is less than a half of the lattice extent L and

the exponential tail is negligible, the half-off-shell amplitude on the lattice HL(p;k) can be obtained

through h(x;k),

HL(p;k) =− ∑
x∈L3

Ckh(x;k) j0(px), (2.4)

where j0(px) is the spherical Bessel function. R < L/2 is the sufficient condition for lattice QCD

calculation of the scattering amplitude. The half-off-shell amplitude in the infinite volume is related

to H(p;k) by H(p;k) = HL(p;k)/C00, where C00 =Ck/F(k,L) with a finite volume factor of two

pions F(k,L) [9]. It associates the two-pion BS wavefunction in the infinite volume φ∞(x;k) with

φ(x;k) on the lattice, φ∞(x;k) = F(k,L)φ(x;k).

The scattering phase shift δ (k) is related to H(k;k) through

H(k;k) =
4π

k
eiδ (k) sinδ (k). (2.5)

Though the phase factor eiδ (k) can not be evaluated on the lattice, we can utilize some ratio to obtain

δ (k). HL(k;k)/(Ckφ(xref;k)) at a reference point xref, for example, provides δ (k),

tan δ (k) =
sin(kxref)

4πxrefCkφ(xref;k)/HL(k;k)− cos(kxref)
. (2.6)

The overall constants and the phase factor are canceled in the ratio. The scattering length a0 and

the effective range reff are defined by the effective range expansion,

k

tanδ (k)
=

1

a0

+ reffk
2 +O(k4). (2.7)

We estimate a0 approximately by

a0 =
tanδ (k)

k
. (2.8)

A tiny value of k2 of I = 2 two-pion justifies this estimation. Similarly, reff is estimated by

reff =−
2k2H ′+ sin2 δ (k)

2k sin δ (k)cos δ (k)
, H ′ =

∂H(p;k)

∂ p2
|p2=k2/H(k;k), (2.9)

where we assume ∂ (H(p;k)e−iδ (k))/∂ p2 ∼ ∂ (H(p; p)e−iδ (p))/∂ p2 and the phase of H(p;k) is

eiδ (k) at p2 ∼ k2.

3. Set up

We perform a quenched QCD simulation as a test bed of our approach for the scattering

amplitude. Gauge configurations are generated on 243 × 96 and 243 × 64 lattices, saved at each

100 HMC trajectories. We employ Iwasaki gauge action [10] at the bare coupling β = 2.334,

which corresponds to a lattice spacing of a−1 = 1.207 GeV [11]. We use Clover quark action
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Lattice size κval Nsrc Source type Nconfig

243 ×96 0.1340,0.1358,0.1369 24 Z2 200

243 ×64 0.1340 32 Z2 400

16 Wall 200

Table 1: Simulation parameters.

with a mean field improvement, CSW = 1.398. The valence quark hopping parameters are κval =

0.1340,0.1358,0.1369. These hopping parameters corresponds to pion masses of mπ = 0.86–

0.52 GeV. Table 1 compiles our simulation parameters.

The two-pion four-point function is computed with random Z2 sources to prevent from Fierz

rearrangement. The source is located at a time slice tsrc and all spatial points. The source spreads

also in all colors and spins to reduce the simulation cost [12]. The gain is found to be a factor of

three in our simulation. We use four random sources to calculate all six combinations of a pair of

quark propagators from different random sources. Wall sources are also employed at κval = 0.1340

on 243 ×64 for confirmation of operator independence of our simulation results. The wall sources

are placed at tsrc and tsrc +1 to deflect Fierz contamination [13]. The pion two-point functions are

calculated in the same set up as those of the two-pion four-point function. The boundary conditions

are chosen to be periodic in spatial directions, and Dirichlet in the temporal direction. The Dirichlet

boundary is placed away from tsrc by 12-time distance.

Our data is fitted in the range of [tmin, tmax] = [14,44] to determine a single pion mass and

two-pion energy on 243 × 64 lattice, and [tmin, tmax] = [14,74] on 243 × 96 lattice. We employ

[tmin, tmax] = [44,74] for a fit of wave functions on 243 ×96. On 243 ×64 lattice, only a time slice

of t = 44 is available for the wave function analysis.

The interaction momentum k is determined by two methods. One is the momentum of the

two-pion energy of the temporal correlator in Eq. (2.1), denoted by kt =
√

Ek/4−m2
π . The other

is the momentum defined by the spatial wave function outside the interaction range, denoted by

ks =
√

−∆φ(x;k)/φ(x;k),x > R. The sufficient condition of Eq. (2.3) is satisfied by definition,

(∆+ k2
s )φ(x;k) = 0 for x > R. ks has been found to be more precise than kt [4].

4. Result

Figure 1 illustrates our results of the reduced wave function h(x;k) defined in Eq. (2.2) with

k = kt . h(x;k) is normalized by φ(x;k) at a reference point xref to eliminate the overall constant.

xref = (12,7,2) is chosen to minimize l = 4 contribution to φ(x;k). The left panel of Fig. 1 exhibits

quark mass dependence of h(x;ks)/φ(xref;k) on 243 × 96 with random Z2 sources. Our result

suggests the interaction range R ∼ 10 < L/2. h(x;k) = 0 is confirmed in x > R within our statistical

errors. The sufficient condition of Eq. (2.4) is satisfied in our quark mass region. The right panel of

Fig. 1 presents h(x;ks)/φ(xref;k) on 243 ×64 with random Z2 and wall sources. Both results agree

with each other. Consistency of the results proves the source independence of h(x;ks)/φ(xref;k).

Satisfaction of the sufficient condition R∼ 10< L/2 allows us to evaluate HL(p;k) by Eq. (2.4).

We use k = kt ,ks for h(x;k) in HL(p;k) evaluation. We found HL(p;k) with a summation over all
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Figure 1: Reduced wave functions h(x;k) normalized by the wave function φ(xref;k) at a reference point

xref = (12,7,2) on 243 × 96 (left panel) and on 243 × 64 (right panel). k = kt is employed.
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Figure 2: Chiral extrapolations of the scattering length over the pion mass a0/mπ . Open squares are lattice

QCD results with the finite volume formula [4]. Open circle is a phenomenological value from ChPT [14].

Open symbols are slightly shifted for clarification of data.

spatial volume is equal to that with up to x = 10 ∼ R, suggesting our estimate of R is valid. It is

noted our result still has discretization effects. The rotational symmetry breaking appears as devia-

tions between on-axis and off-axis data of h(x;k). It causes 3% difference in HL(p;k), which is the

same order as our statistical error. Another point is data near x = 0 are affected more significantly

by the finite lattice spacing. Their contributions, however, are suppressed in HL(p;k) by the Jaco-

bian r2 in the integral. h(x;k) at small x contributes little to HL(p;k). To remove these systematic

errors, the continuum extrapolation is required.

At on-shell p = k, we determine tanδ (k) by Eq. (2.6) and the scattering length a0 by Eq. (2.8).

We perform a chiral extrapolation of a0 to the physical point with a formula motivated by chiral

perturbation theory(ChPT) [15],

a0/mπ = Aa0
+Ba0

m2
π +Ca0

m4
π , (4.1)

where Aa0
,Ba0

,Ca0
are fitting parameters. Fig. 2 presents the chiral extrapolations of a0/mπ . Our

result agrees with the previous lattice QCD estimate using the finite volume formula [4] and the

phenomenological value using ChPT [14]. It validates our approach using φ(x;k) inside the inter-

action range, in contrast to the conventional method using φ(x;k) outside the interaction range.
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Figure 3: Half-off-shell amplitude H(p;k) normalized by its on-shell value H(k;k) with k = ks. The vertical

line expresses the inelastic threshold energy.
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Figure 4: Chiral extrapolations of the effective range reff. Open squares are N f = 0 lattice QCD results with

the finite volume formula evaluated from data in Ref. [4]. Open triangle is N f = 2+ 1 lattice QCD result

with the finite volume formula [17]. Open circle is a phenomenological value by ChPT [14]. Open symbols

are slightly shifted for clarification of data.

Fig. 3 exhibits the half-off-shell amplitude H(p;k) as a function of p2, normalized by its

on-shell value. We have a clean signal of H(p;k) throughout the p2 range we surveyed. The

overall factor as well as the source operator dependence of HL(p;k) are canceled out in the ratio,

HL(p;k)/HL(k;k) = H(p;k)/H(k;k). The sink smearing of the pion operator produces an extra

overall factor, but it can be analytically removed [16]. Though H(p;k) is not observable directly in

experiments, it is useful for effective theories and models of hadrons. Our data of H(p;k) can be

an additional input to the effective theories and models, in complement to experimental data.

The effective range reff is calculated with H(p;k) through Eq. (2.9). Fig. 4 presents chiral

extrapolations of mπreff. Our results are consistent with those by the conventional finite volume

formula, extracted from data in Ref. [4]. The explicit p2 dependence of H(p;k) leads to more ac-

curate results than those by the finite volume formula. The chiral extrapolation of reff is performed

with a formula based on ChPT [18],

mπreff = Areff
/m2

π +Breff
, (4.2)
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where Areff
,Breff

are fitting parameters. At the physical point, our result clearly deviates from the

phenomenological estimate [14]. A probable possibility is the chiral extrapolation. Data near the

physical point seems to be required. Another source of the deviation is the quenched approxima-

tion. A dynamical N f = 2+1 lattice QCD with mπ = 390 MeV reproduces the phenomenological

value [17]. More realistic N f = 2+ 1 lattice QCD data close to the physical point are needed to

clarify the origin of the discrepancy.
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