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Two pentaquarks P+
c were discovered by LHCb collaboration as peaks in the proton-J/ψ invariant

mass. We perform the lattice QCD study of the scattering between J/ψ meson and nucleon in the
channels with JP = 3
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−

, where P+
c was discovered. This is the first lattice simulation

that reaches the energies 4.3−4.5 GeV where pentaquarks reside. The higher parital waves L > 0
are also explored for the first time. In this study we consider the single-channel approximation
for scattering of NJ/ψ . Energies and eigenstates are extracted for the NJ/ψ system at the zero
total momentum for all six irreducible representations of the lattice irreducible representation. No
significant energy shifts are observed. The number of eigenstates agrees with the number expected
from non-interacting limit for scattering. This could possibly indicate that the Pc resonances
seen in experiment are a consequence of a coupling of the NJ/ψ channel with other two-hadron
channels.

The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018
22-28 July, 2018
Michigan State University, East Lansing, Michigan, USA.

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:ursa.skerbis@ijs.si
mailto:sasa.prelovsek@ijs.si


P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
8
7

NJ/ψ scattering Ursa Skerbis

1. Introduction

Two peaks in a proton-J/ψ invariant mass were discovered in 2015 by LHCb [2]. This dis-
covery was later confirmed by a model independent study in 2016 by the same collaboration [3].
Two resonances were observed, the broader with width Γ = 205 MeV and mass M ≈ 4380 MeV
and the narrower with Γ = 40 MeV and mass M ≈ 4450 MeV. These resonances were later iden-
tified as hidden charm pentaquarks Pc with minimal flavor structure uudcc̄. LHCb found the best
fit for spin-parity assignments (JP1

1 ,JP2
2 ) = (3

2
−
, 5

2
+
), while acceptable solutions are also found for

additional cases with the opposite parity, either ( 3
2
+
, 5

2
−

) or ( 5
2
+
, 3

2
−). Pc resonances can strongly

decay to a nucleon and a charmonium as well as to a charmed baryon and charmed meson.
At present there is no knowledge on Pc resonances based on the first-principle lattice QCD.

The lattice simulations of systems with flavor c̄cuud have never reached energies where the pen-
taquarks reside. Previous dynamical [4] and quenched [4] studies [5] presented results for NJ/ψ

and Nηc potentials and phase shifts in s-wave using HALQCD method in one-channel approxima-
tion. These were extracted up to the energies 0.2 GeV above threshold. An attractive interaction
was found in all channels explored, but not attractive enough to form bound states or resonances.
The hadroquarkonium picture was considered in [6], where the static c̄c potential V (r) was ex-
tracted for mc→ ∞ as function of distance r in the presence of the nucleon. The potential is found
shifted down only by a few MeV due to the presence of the nucleon.

This is the first lattice simulation of NJ/ψ scattering that reaches the energies 4.3−4.5 GeV
where pentaquarks reside. We explore partial wave L = 0 and for the first time also L > 0. The
aim is to explore the fate of pentauqrak in one-channel approximation, where NJ/ψ is decoupled
from other two-hadron channels. We therefore perform a simulation of NJ/ψ scattering in one-
channel approximation in order to find whether Pc features in the spectrum in this case. The detailed
presentation of the study is given in [1], together with analogous simulation of the Nηc channel.

The energy spectrum of the NJ/ψ system in the non-interacting limit is an important refer-
ence case for scattering studies. The momenta p = n 2π

L
of each hadron are discrete due to peri-

odic boundary conditions of fermions in space on the lattice. The non-interacting energies of the
nucleon-meson system are

En.i. = EN(p)+EV (−p), p = n
2π

L
, ∆E = E−En.i. (1.1)

with n ∈ N3. The EH=N,V (p) 1 are single hadron energies measured for different momenta on our

lattice, they satisfy EH=N,V (p) =
√

m2
H=N,V + p2 in the continuum. Non-interacting energies En.i.

are shown in Figure 1, together with experimental masses of Pc resonances. In order to capture
the region of both resonance, NJ/ψ channel is explored up to p2 ≤ 2. The aim is to determine
eigen-energies of the NJ/ψ system. Energies En are compared to non-interacting energies En.i in
search for the energy shift ∆E. Significant non-zero energy shift ∆E 6= 0 or an additional eigenstate
could indicate the presence of a resonance state in the system [7].

2. Single hadron operators

In order to determine non-interacting energies of the NJ/ψ system, the energies of nucleon
1Due to simplicity, p will be used instead of p from here on.
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Figure 1: Non-interacting energies for the nucleon-charmonium system on our lattice (1.1). Green and
turquoise dash-dotted lines are added at Pc masses.

and meson are computed separately. We used 3 standard nucleon interpolators (Eq. 2.1) and 2
standard mesonic interpolators (Eq. 2.2) for each value of relative momenta p.

N(~p, t) = ∑~x εabcP+Γ1u(~x, t)(uT (~x, t)Γ2d(~x, t))ei~p~x, (Γ1,Γ2) : (1,Cγ5), (γ5,C), (1, ıγ4Cγ5)(2.1)

V (~p, t) = ∑~x c(~x, t)Γc̄(~x, t)ei~p~x Γ : γi,γiγ5, i = x,y,z (2.2)

3. Two-hadron operators, expected degeneracy and construction of two hadron
correlators

The operators for scattering of particles with spin were already employed within our previous
work [10], where all explicit expressions for operators of form O ≈ N(p)V (−p) for p2 ≤ 1 are
given. We employ operators in Partial wave method [11, 10]

O|p|,J,mJ ,L,S = ∑
mL,mS,ms1,ms2

CJmJ
LmL,SmS

CSmS
s1ms1,s2ms2 ∑

R∈O
Y ∗LmL

(R̂p)Nms1(Rp)Mms2(−Rp) . (3.1)

These are subduced to the chosen irrep Γ (Eq. 3.2) using subduction coefficients S J,mJ
Γ,r from [12].

O[J,L,S]
|p|,Γ,r = ∑

mJ

S J,mJ
Γ,r O|p|,J,mJ ,L,S. (3.2)

On the lattice, the operators OJ,mJ form a reducible representation with respect to the lattice
group Oh. One has to employ operators which transform according to irreducible representations
ΓP. Those are listed in Table 1, where several JP contribute to a given irrep ΓP.

irrep ΓP JP

G±1
1
2
± , 7

2
±

G±2
5
2
±

, 7
2
±

H± 3
2
± , 5

2
±

, 7
2
±

Table 1: Irreducible representations ΓP of the discrete lattice group Oh, together with a list of JP that a
certain irrep contains.

Pc states with J = 3/2± or 5/2± could be seen in irreps G±2 or H±. A simple example of the
NJ/ψ operator at p = 0 that transform according to the H− irrep is

OH−,r=1
(J,L,S)=( 3

2 ,0,
3
2 )
(0) = N 1

2
(0)(Vx(0)− iVy(0)) . (3.3)
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irrep N(p)J/ψ(−p)
p2 = 0 p2 = 1 p2 = 2

G+
1 0 2 3

G−1 1 2 3
G+

2 0 1 3

irrep N(p)J/ψ(−p)
p2 = 0 p2 = 1 p2 = 2

G−2 0 1 3
H+ 0 3 6
H− 1 3 6

Table 2: The number of the expected degenerate eigenstates for each row of irrep (in non-interacting limit).
Each of those linearly independent eigenstates should appear in the spectrum. This number is equal to the
number of the linearly-independent operator-types.

In a non-trivial case, relations 3.1 and 3.2 lead to multiple linear-dependent operators. For
each irrep one can find linearly independent basis of operator-types. The employed operator-types
can be found in appendix of [1]. All remaining operators can be written as a linear combination of
these.

In the non-interacting limit, one expects several degenerate N(p)V (−p) eigenstates for most
of JP (or irreps) and relative momenta p> 0. In the continuum, different combinations of (L,S) lead
to a given JP (|L−S| ≤ J≤ |L+S|) due to the non-zero spins of the scattering particles. The linearly
independent combinations (L,S) represent linearly independent eigenstates, so each of them should
feature as an independent eigenstate in the spectrum. On the lattice, also different spins JP can
contribute to a given irrep ΓP as listed in Table 1. Linearly independent combinations coresponding
to (JP,L,S), that subduce to given irrep ΓP, now present linearly-independent eigenstates. The
numbers of these states are summarized in Table 2 - those are the number of degenerate eigenstates
in a given row of irrep in the non-interacting limit. The number of linearly independent operator-
types is also equal to the number of degenerate eigenstates.

In the elastic approximation there is no contraction connecting J/ψ and N interpolators, as
shown in Figure 2. Therefore a single-hadron correlation function can be simulated separately

c

c

u

u

d d

u

u

c

c c

c

u

u

d d

u

u

c

c

Figure 2: Wick contractions considered in our simulation for one-channel approximation.

and later combined to the two-hadron correlation functions. An example of two-hadron correlator
corresponding to operator 3.3 at the sink and its creation operator ŌH−,r=1

(J,L,S)=( 3
2 ,0,

3
2 )

at the source is
given in Equation 3.4

CV N;H−

(J,L,S)=( 3
2 ,0,

3
2 )
(0) =CN

1
2→

1
2
CV

x→x− iCN
1
2→

1
2
CV

x→y + iCN
1
2→

1
2
CV

y→x +CN
1
2→

1
2
CV

y→y, (3.4)

CH
polsrc→polsnk

= 〈Ω|Hpolsnk H̄polsrc |Ω〉, H = N,V.

Similarly, all two-hadron correlators in our study can be expressed in terms of 〈0|Nm′s(p′)N̄ms(p)|0〉,
〈0|Vi′(p′)V †

i (p)|0〉 and 〈0|P(p′)P†(p)|0〉, which were pre-computed for all combinations of p′, p =

0,1,2, i, i′ = x,y,z and ms,m′s = 1/2,−1/2.
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4. Lattice setup

All simulations were performed on N f = 2 ensemble with parameters listed in table 3, that was
generated in context of the work [8, 9].

N3×NT β a[fm] L[fm] #config mπ [MeV]
163×32 7.1 0.1239(13) 1.98(2) 281 266(3)

Table 3: Parameters of the lattice ensemble.

Wilson-Clover action is used for light quarks while for charm quarks Fermi lab approach is
employed. Full distillation was used for quark smearing. 48 eigenvectors were used for smear-
ing of light quarks in nucleon, while charm quarks in charmonium were smeared with use of 96
eigenvectors.

5. Results

Resulting eigen-energies for single and two hadron system are presented. All results are
obtained from the correlated one exponential fits and the errors are calculated using jack-knife
method.

5.1 Individual energies of N and J/ψ

The energies of nucleon and J/ψ meson for various momenta p2 = 0,1,2 are given in Table
4. Those are needed to determine (1.1).

particle p2 Ena σEna fit range

N 0 0.701 0.019 [6,9]
1 0.769 0.028 [7,10]
2 0.849 0.054 [7,9]

particle p2 Ena σEna fit range

J/ψ 0 1.539 0.001 [10,14]
1 1.576 0.001 [10,14]
2 1.613 0.001 [9,12]

Table 4: Fitted energies for single hadrons.

5.2 NJ/ψ channel

Eigen-energies of NJ/ψ system were extracted from the correlation matrices using GEVP.
This big correlation matrices give rather noisy eigenvalues, therefore we restricted our analysis to
a smaller subset, where each operator-type is represented by two operators: both meson operators
(2.2) and the first nucleon operator (2.1). Energies are obtained from the eigenvalues using the
correlated one-exponential fits, while their errors are calculated using jack-knife method. All fits
were performed for t = [7,10].

The observed spectrum is shown in Fig. 3. The energies are compatible with non-interacting
ones (1.1) within our errors. We establish all almost-degenerate states expected in the non-interacting
limit (Table 2). So our lattice results show no significant energy shift or any additional eigenstate.
Pc candidate channels ( JP = 5

2
+

and 3
2
−) are compared to the analytic prediction of eigen-energies

in a scenario with Breit-Wigner-type Pc(4450) or Pc(4380) resonances, shown in Figure 4. In
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Figure 3: Energy spectrum of NJ/ψ system in all 6 irreps of O2
h. Dashed lines are non-interacting NJ/ψ

energies (Eq. 1.1). Green and turquoise dash-dotted lines are experimental values of MPc . Center of rectangle
is eigen-energy En and its height corresponds to 2σE . The number of expected states in non-interacting case
is added to a figure on a upper left side at each data set.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

E n - 
1/

4 
(3

 m
J/

ψ
+m

η c)  
[G

eV
]

2 2.1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Pc(4450) with JP=5/2+

 in channel (L=1, S=3/2)

2 2.1 2.2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
in channel (L=0, S=3/2)

2 2.1 2.22 2.1 2.2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
in channel (L=2, S=3/2)

Pc(4380) with JP=3/2-

irrep    G2
+         H+

JP     5/2+,7/2+    3/2+,5/2+,7/2+   3/2-,5/2-,7/2-   3/2-,5/2-,7/2-   
H- H-

N(0) J/ψ(0)

N(1) J/ψ(-1)

N(2) J/ψ(-2)

Pc(4380)
Pc(4450)

Figure 4: The energies of eigenstates in a scenario with a Breit-Wigner-type Pc(4450) or Pc(4380) reso-
nances, assuming that it is coupled only to NJ/ψ channel and decoupled from other two-hadron channels.
This scenario renders an additional eigenstates near MPc ±ΓPc with respect to the non-interacting case.

a scenario featuring Pc (Figure 4) we would expect an additional eigenstate (with respect to the
non-interacting case) at an energy close to MPc . These additional eigenstates are not found in our
study. We conclude that the scenario based on a Breit-Wigner-type Pc resonances, coupled solely
to NJ/ψ , is not supported by our lattice data.

6. Conclusion

We perform a N f = 2 lattice QCD simulation of NJ/ψ scattering in the one-channel approx-
imation, where N denotes a proton or a neutron. The resulting energies of eigenstates in Figure
3 are compared to the analytic predictions of a scenario with non-interacting NJ/ψ system and a
scenario featuring a Pc resonance coupled to a single channel. We find that the extracted lattice
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spectra is consistent with the prediction of an almost non-interacting NJ/ψ system within errors of
our calculation. The scenario based on a Breit-Wigner-type Pc resonance, coupled solely to NJ/ψ ,
is not supported by our lattice data. This might suggest that the strong coupling between the NJ/ψ

with other two-hadron channels might be responsible for the existence of the Pc resonances in the
experiment. Future lattice simulations of coupled-channel scattering are needed to investigate this
hypothesis.

More details on this study can be found in [1], where also Nηc scattering in one-channel ap-
proximation is considered.
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