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1. Introduction

The charged pion electromagnetic form factor can be probed by a vector current of the photon.
The experimental error of the pion electromagnetic form factor is around 1% in the small q2 region
with mean squared radius 〈r2〉 = 0.452(11) fm2 as given by the Particle Data Group (PDG) [1].
Such a form factor can be calculated using Lattice QCD, but a precise measurement using Lattice
QCD near the physical pion mass will be needed to control dominant systematic errors coming
from its strong quark mass dependence. Decades of improving computational power along with the
development of Lattice QCD theory and algorithms makes it possible to carry out a measurement
from higher pion mass to the physical region [2, 3, 4, 5, 6, 7, 8, 9] with various actions. It has been
observed that in these calculations the values of 〈r2〉 at higher pion masses are significantly lower
than the experimental value before chiral extrapolation [10]. On the other hand, one calculation
using Highly Improved Staggered Quark formalism [9] directly at the physical pion mass agrees
with experiment.

In order to study the above strong quark mass dependence of the pion form factor, the overlap
fermion with multi-mass algorithm will be a good option compared to other formulations. By using
existing grid source propagators with several quark masses generated by our χQCD collaboration
using overlap fermions, a straightforward calculation of the vector current three-point functions
and corresponding two-point functions has been carried out to obtain 〈r2〉 with less than 4% error
at several valence pion masses ranging from 147 MeV to 389 MeV on two lattices.

2. Lattice Setup and Fitting Results

In this work, we use overlap fermions on 2+1-flavor domain-wall configurations on a 243×
64 lattice (24I) with Iwasaki gauge action and on a 323 × 64 lattice (32ID) with Iwasaki plus
the Dislocation Suppressing Determinant Ratio (DSDR) gauge action [11] listed in Table 1. For
pion correlation functions, grid sources without low mode substitution (LMS) have been used in
this production as suggested in reference [12]. With a careful treatment of the backward pion
propagation, we are able to use two time sources with separation of half of total number of time
slices (T/2) to double the statistics. On 24I, a Gaussian-smeared source [13] has been applied
with root mean square (RMS) radius 1.18 fm along with the same smeared sink. On 32ID, a box-
smeared source [14] has been applied with box half size 1.0 fm along with the same smeared sink.
Such a two-point function will be fitted using Eq. (2.1).

C2pt(t,~p) =∑
~x

e−i~p·~x 〈T[χπ+(~x, t)χ†
π+(~0, [0,T/2])〉

≈
m|Z~p|2

E
(e−Et + e−E(T/2−t))(1+ e−E(T/2))

+
m|Z1

~p|2

E1 (e−E1t + e−E1(T/2−t))(1+ e−E1(T/2))

(2.1)

χπ+(~x, t) = ū(~x, t)γ5d(~x, t) is the interpolating field of the pion, E is the pion energy at momentum
~p and Z~p is the spectral weight for smeared source and sink at momentum ~p and E1 and Z1

~p are the
corresponding energy and spectral weight of the first excited state.
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Lattice Size a (fm) L (fm) Pion (MeV) mπL
24I 243×64 0.11 2.64 337 4.5

32ID 323×64 0.143 4.58 171 3.97

Table 1: Lattice parameters of 24I and 32ID

Precise simulation of the three-point functions with connected-inserstion of vector current
V4 for the matrix element 〈π(p f )|V4 |π(pi)〉 has been done with the stochastic sandwich method
described in reference [15]. Along with sink momentum ~p f = 0 and mixed momentum source [15]
with momentum ~pi equal to momentum transfer~q =~p f −~pi, we can code with the same trick as the
sink-sequential method [16, 17] to determine all the momentum transfers with only one three-point
function contraction to significantly lower the contraction cost. The corresponding three-point
function can be fitted with Eq. (2.2)

C3pt(τ, t f ,~pi,~p f ) =∑
~x f ,~z

e−i~p f ·(~x f−~z)e−i~pi·~z 〈T[χπ+(~x f , t f )V4(~z,τ)χ
†
π+(~0, [0,T/2])]〉

≈
Z~piZ~p f (2m)2

(La)34EiE f
〈π(p f )|V4 |π(pi)〉

× e−Eiτ−E f (t f−τ)(1+ e−EiT/2)

+C1e−E1
i τ−E1

f (t f−τ)+C2e−E1
i τ−E1

f (t f−τ)

(2.2)

in which common parameters have the same meaning as in the two-point function, Ei and E f are
the pion energy at momentum ~pi and ~p f and E1

i and E1
f are the corresponding energies of the

first excited state. C1 and C2 are the unknown transition amplitudes with corresponding overlap
factors from ground state to the first excited state as 〈π1(p f )|V4 |π(pi)〉 and 〈π(p f )|V4 |π1(pi)〉,
respectively. We ignore the matrix element 〈π1(p f )|V4 |π1(pi)〉 which is small in most cases.
By using the same smeared source and smeared sink as in the two-point function, joint fitting of
C3pt and C2pt can give the matrix elements 〈π(p f )|V4 |π(pi)〉 at several momentum transfers. In
order to control the systematic errors coming from the excited-state contamination, we have done
calculations with source-sink separation t f − ti = 8a,10a and 12a on 24I (equal to 0.88 fm,1.10 fm
and 1.32 fm, respectively) and t f − ti = 9a,10a and 11a on 32ID (equal to 1.287 fm,1.430 fm
and 1.573 fm, respectively). As an example, Fig. 1 shows the fitting plot on 32ID for pion mass
174 MeV at zero momentum transfer and pion form factor fππ(Q2) from Eq. (2.3) at the smallest
momentum transfer with Q2 ≡ q2− (E f − Ei)

2 = 0.05 GeV2 with reasonable χ2 of 0.6− 1.2.
The result shows only a 0.5% difference between separations which means that the current source-
sink separations are large enough so that there is a good control of the systematic errors from the
excited-state contamination.

fππ(Q2) =
1

Ei +E f

〈π(p f )|V4 |π(pi)〉
〈π(p f )|V4 |π(p f )〉

(2.3)

As we are using overlap fermions which have exact chiral symmetry on lattice, we should have
vector renormalization constant equal to axial normalization constant, ZV = ZA. A detailed study
of renormalization constants of overlap quark bilinear operators [18] shows that ZV/ZA = 1 is well
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Figure 1: (Left panel) The joint fitting of correlation functions on 32ID at zero momentum transfer.
(Right panel) The case of px = 0, py = 0, pz = 2π/L with the summation of 8 symmetric momenta
which give momentum transfer Q2 = 0.05 GeV2 on the 32ID at pion mass 174 MeV.

satisfied. In reference [19], ZA has been calculated using the same method in reference [18] on the
32ID lattice. In this pion form factor calculation on 32ID, ZV can be obtained using Eq. (2.4).

ZV =
1

〈π(0)|V4 |π(0)〉
(2.4)

By comparing the ZA from ratios of the two-point functions along with the ZV at seven pion
masses from the joint fit of the three-point function and the two-point function in Fig. 2 on 32ID,
it is obvious that within 0.3% error, ZV and ZA agree with each other. With these two different
independent analyses, we confirm that current calculation and the joint fitting analysises have good
control of various systematic errors.
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Figure 2: ZA and ZV on 32ID

With the z-expansion [20] method we have done a model-independent fitting of the pion form
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Lattice Pion (MeV)
24I 253.26(47) 281.56(44) 320.72(43) 347.38(42) 388.92(42)

32ID 146.66(19) 173.95(18) 232.75(17) 261.50(17) 287.28(17) 325.68(17) 391.34(17)

Table 2: Fitted pion masses on 24I and 32ID

factor fππ(Q2) using Eq. (2.5) with kmax = 2.

fππ(Q2) = 1+
kmax

∑
k=1

akzk

z(t, tcut , t0) =
√

tcut − t0−
√

tcut − t0√
tcut − t0 +

√
tcut − t0

t =−Q2, tcut = 4m2
π

(2.5)

The pion form factor results are shown in Fig. 3 with pion mass 347 MeV on 24I and 174 MeV
on 32ID chosen to be close to their domain-wall sea pion mass. We have used ZV to normalize
the form factors at non-zero momentum transfers. With increasing momentum transfers, signals of
the matrix elements decrease dramatically so that we can have six or seven momentum transfers
which constrain the current fitting parameters. This limits our ability to access higher momenta on
coarser and larger lattices such as 32ID compared to 24I.
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Figure 3: z-expansion fitting of the pion form factor on 24I with pion mass 347 MeV and on 32ID
with pion mass 174 MeV.

A similar fitting procedure has been done on all valence pion masses listed in Table 2. After
the z-expansion fitting, we can get 〈r2〉 by taking the derivative of the fitted function Eq. (2.6).

〈r2〉 ≡ 6
fππ(Q2)

dQ2 |Q2=0 (2.6)

The final 〈r2〉 results on 24I and 32ID are shown in Fig. 4 with several pion masses including
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Figure 4: 〈r2〉 as function of m2
π on 24I and 32ID compared to the PDG value

146.66(19) MeV which is very close to physical pion mass 139.57 MeV. Such lowest pion mass
result from 32ID is consistent with the experiment (PDG) value within current statistics. The most
notable difference is that the 24I result is around 20% lower than the 32ID result at similar pion
mass. Such a difference may come from their difference of sea pion mass, lattice spacing or lattice
volume which is out of control in the current calculation. Due to such a large discrepancy, we will
need one or two more comparable lattices to find out which parameter has the largest effect.

3. Summary and Conclusion

We presented calculations of the pion form factor using overlap fermions with a range of
pion masses. By differentiating the fitted fππ(Q2) shown in Fig. 3, we get the corresponding pion
charge radius 〈r2〉 to be 0.304(10) fm2 on 24I at pion mass 347.38(42) MeV and 0.426(15) fm2

on 32ID at pion mass 146.66(19) MeV. With multi-mass algorithm using overlap fermions, we
obtained the dependence between pion charge radius and valence pion masses shown in Fig. 4.
Further calculations on additional lattices with different sea quark masses, lattice spacings and
lattice volumes will be needed to do a global fitting to extrapolate to the physical limit.
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