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1. Introduction

The current most precise determination of the hadronic vacuum polarization (HVP) contri-
bution to the anomalous magnetic moment of the muon aµ is obtained using the cross section
of e+e− → hadrons (see [1, 2, 3] for recent results) and has an error of about . 1%. A lattice
calculation aiming at a similar precision requires to include isospin breaking corrections.

In nature, isospin symmetry is broken by the different quark masses of the up and the down
quark and their different electric charges. These effects are expected to be of the order O((md −
mu)/ΛQCD) and O(α), respectively. In this proceedings we present a calculation of isospin break-
ing corrections to the hadronic vacuum polarization at physical quark masses. These results have
been published in [4] and are a continuation of our work in [5], where we calculated isospin break-
ing correction to the HVP at unphysical quark masses. Other calculations of isospin breaking
corrections to the HVP can be found in [6, 7].

The structure of the proceedings is as follows: In section 2 we give details on the computational
setup and describe our procedure to tune the quark masses to their physical values including isospin
breaking corrections. In section 3 we discuss our results for QED and strong isospin breaking
corrections. Conclusions and outlook are given in section 4.

2. Computational Setup and Tuning of the Quark Masses

In this work we calculate isospin breaking corrections using an expansion [8, 9] around the
isospin symmetric limit, i.e.

C(t) =C0(t)+αCQED(t)+∑
f

∆m fC∆m f (t)+O(α2,α∆m,∆m2) (2.1)

for a correlation function C(t), where C0(t) is the correlation function in the isospin symmetric
case, αCQED(t) and ∑ f ∆m fC∆m f (t) are the leading order QED and strong isospin breaking cor-
rection, respectively.

The set of diagrams at O(α) from the expansion in the electromagnetic coupling is shown in
figure 1. These can be divided in three different classes of diagrams: QED corrections to the quark-
connected contribution are given by diagrams V and S, QED corrections to the quark-disconnected
contribution are given by diagrams F and D3. Diagrams T , D1, D2 and Td , D1d , D2d are electro-
magnetic effects for the sea quarks for the quark-connected and quark-disconnected contribution,
respectively. In this work we calculate the connected diagrams (V , S) and the leading disconnected
diagram F . All other diagrams are at least 1/Nc or SU(3) flavour suppressed for the HVP and we
add an overall systematic uncertainty of 30% of the QED correction from neglecting these dia-
grams on our final result for aµ in [4]. Note, that we use local vector currents renormalized by ZV

for the photon insertions, and thus, tadpole contributions are absent. We use Feynman gauge and
the QEDL [10] prescription for the photon propagators

∆µν(x− y) = δµν

1
N ∑

k,~k 6=0

eik·(x−y)

k̂2
. (2.2)
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(a) V (b) S (c) T (d) Td

(e) F (f) D3 (g) D1 (h) D1d (i) D2 (j) D2d

Figure 1: QED correction diagrams at O(α).

Isospin breaking corrections due to the expansion in the quark masses in equation (2.1) are
given by the diagrams in figure 2. In this work, we only calculate the quark-connected correction
(diagram M). We neglect mass corrections to the quark-disconnected contribution (diagram O),
which are 1/Nc and SU(3) flavour suppressed and assign an additional 10% of the strong isospin
breaking correction as an systematic error in the final result for aµ [4]. The mass correction to the
sea quarks (diagram R and Rd for the quark-connected and quark-disconnected HVP, respectively)
is proportional to a factor of (∆mu+∆md) and we find ∆mu ≈−∆md when tuning the quark masses
to their physical values and thus expect diagram R to be negligible.

(a) M (b) O (c) R (d) Rd

Figure 2: Strong Isospin Breaking correction diagrams at O(∆m).

We calculate the isospin breaking corrections to the HVP on a 483× 96 lattice using N f =

2 + 1 dynamical flavours of Mobius Domain Wall Fermions on a single lattice spacing a−1 =

1.730(4) GeV. The isospin symmetric calculation is done using a light and a strange quark mass,
that have been tuned to reproduce a pion of m0

π = 135.0 MeV and a kaon of m0
K = 495.7 MeV in

the absence of QED and strong isospin breaking effects [11]. To obtain up, down and strange quark
masses at their physical values including QED, we proceed as follows. We fix the charged pion,
neutral kaon and charged kaon masses including QED to their experimental values

amexp
π+ =

[
m0

π +αmQED
π+ +∆md m∆md

π+ +∆mu m∆mu
π+

]
(2.3)

amexp
K+ =

[
m0

K +αmQED
K+ +∆mu m∆mu

K+ +∆ms m∆ms
K+

]
(2.4)

amexp
K0 =

[
m0

K +αmQED
K0 +∆md m∆md

K0 +∆ms m∆ms
K0

]
(2.5)

where m0
H is the isospin symmetric mass of H, αmQED

H the QED correction to mass of H and
∆m f m∆m f

H the correction to the mass of H from a shift of the quark mass ∆m f = (m f −m0
f ). The
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shifts ∆m f in the quark masses are free parameters that can be tuned after all the required correlation
functions have been calculated. Once having tuned the quark masses to reproduce the physical
values of π+, K+ and K0 we checked that we also correctly reproduce the neutral pion mass.

In addition, the tuning of the quark masses as in equations (2.3) - (2.5) requires to determine
the lattice spacing in the presence of QED. Here, we choose to set the lattice spacing by fixing the
mass of the Ω− baryon

a→ a(∆ms) =
(

m0
Ω +αmQED

Ω
+3∆ms m∆ms

Ω

)
/mexp

Ω
. (2.6)

We find the shift in the lattice spacing to be smaller then the statistical error on the lattice spacing
and therefore neglect this effect in the following.

3. Results

In the following we discuss our results for different contributions of the QED and strong
isospin breaking corrections to the hadronic vacuum polarization. The HVP contribution to the
anomalous magnetic moment of the muon can be calculated from the vector-vector two-point func-
tion [12, 13]

aµ = ∑
t

wtC(t) with C(t) =
1
3

2

∑
j=0

∑
~x

〈
J j(~x, t)J j(0)

〉
(3.1)

where J j =
2
3 uγ ju− 1

3 dγ jd + · · · are electromagnetic vector currents. In this work we use local
vector currents multiplied with the vector current renormalization ZV . We also calculate the QED
correction to ZV and find this to be negligible for our setup.

3.1 Quark-connected QED correction

Our data for the quark-connected QED correction (diagrams V and S in figure 1) to the inte-
grand wtC(t) is shown in figure 3. The QED correction to aµ from these contributions can then be
obtained by integrating the data over the euclidean time t. However, as one can see in figure 3 the
statistical error on the data is large. Therefore, we replaced the data in the integration for aµ by a
fit ansatz

C(t) = (c1 + c0 t)e−Et . (3.2)

We fix E to the energy of the lowest lying state, which, including QED, is given by πγ , where in
QEDL [10] the photon has one unit of momentum (cf. equation (2.2)). We then fit our data to the
ansatz (3.2) using c1 and c2 as free parameters. The result of this fit is shown in figure 3 by the
solid line.

For the connected QED correction to aµ we find

aQED,con
µ = 5.9(5.7)S(1.1)E(0.3)C(1.2)V (0.0)A(0.0)Z×10−10 , (3.3)

where the first error ()S is statistical. Further to that, we have assigned the following systematic
errors. A systematic error from our fit ansatz ()E is determined by varying the input for the lowest
energy between πγ and ππ . We estimate a discretization error ()C as (aΛ)2 with Λ = 400 MeV.
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Figure 3: Results for the quark-connected QED correction to wtC(t). The result of the fit is shown by the
solid line, with the fainter lines indicating the error band of the fit.

When including QED in a lattice calculation, finite volume corrections can be large (see e.g. [14]).
In this work, we estimate finite volume corrections, be replacing the photon propagator by its
infinite volume expression and take the difference in the final result as a systematic error ()V from
not correcting for these effects. More details on using an infinite volume photon propagator can
be found in the supplementary material of [4]. However, a study presented at this conference
[15] suggests, that the finite volume effects for the QED correction to the HVP are much smaller.
Finally, we propagate uncertainties from the lattice spacing ()A and vector renormalization constant
()Z , but find them to be negligible compared to other sources of systematic errors.

3.2 Quark-disconnected QED correction

The leading QED correction to the quark-disconnected HVP is given by diagram F in figure 1.
Here, we are only interested in contributions, where in addition to the photon the quark lines are
connected by gluons. If no additional gluons connect both quark lines, these contributions are
conventionally counted as higher order HVP contributions and need to be subtracted in this context.

We calculated the leading quark-disconnected QED correction to the HVP using data gener-
ated for the light-by-light scattering project [16]. The data is fitted using the same ansatz (3.2) as
for the connected QED correction. We find for the leading quark-disconnected QED correction to
the anomalous magnetic moment

aQED, disc
µ =−6.9(2.1)S(1.3)E(0.4)C(0.4)V (0.0)A(0.0)Z×10−10 , (3.4)

where we have assigned a similar set of systematic errors as above.

3.3 Strong Isospin breaking corrections

In figure 4 we show the correction to the vector two-point function C(t) for the quark-connected
mass insertion diagram (diagram M in figure 2). We fit the correlator using a similar ansatz (3.2) as
for QED, using ππ as the lowest lying energy state as an input. Here, we vary the energy between
two interacting and two free pions to obtain a systematic error ()E from the fit ansatz.
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Figure 4: The isospin breaking correction to C(t) from the connected mass insertion diagram M.

For the correction to aµ from diagram M we find

asIB
µ = 10.6(4.3)S(1.3)E(0.6)C(6.6)V (0.1)A(0.0)Z×10−10 . (3.5)

For the strong isospin breaking correction we estimate finite volume corrections using chiral per-
turbation theory [17].

4. Conclusions

The results shown here are part of RBC/UKQCD’s recently published result for the anomalous
magnetic moment of the muon [4]. This work is the first calculation of the HVP contribution to the
aµ including a calculation of QED and strong isospin breaking corrections directly at the physical
point. Although our statistical errors are still large, we find isospin breaking corrections to be at the
order of 1%, with results for the connected QED correction given in (3.3), the leading disconnected
QED correction given in (3.4) and the connected strong isospin breaking correction given in (3.5).
For the future, we plan to increase the statistics on these contributions in addition to calculating the
missing quark-disconnected diagrams and studying the effect of isospin breaking corrections for
the sea quarks. In that context we are looking into reusing the data from the hadronic light-by-light
scattering project [16] for all of the diagrams shown in figure 1. Further to that, we will extend our
study of isospin breaking corrections to a second lattice spacing in oder to take a continuum limit.

These future improvements will allow us to determine the isospin breaking correction to aHV P
µ

precise enough to be consitent with reaching an overall error of < 1% on the total QCD+QED
result for aHV P

µ from a lattice calculation.
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