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We simulate lattice QCD at finite quark-number chemical potential, µ , using the complex-

Langevin equation (CLE) with gauge-cooling and adaptive updating to prevent instabilities. The

CLE is used because QCD at finiteµ has a complex fermion determinant which precludes the

use of standard simulation methods based on importance sampling. Since, even when CLE sim-

ulations converge, they are not guaranteed to produce correct results except under very stringent

conditions, which lattice QCD at finiteµ does not obey, we need extensive testing to determine

under what conditions it produces reliable results. We performed simulations atβ = 6/g2 = 5.6

andβ = 5.7, both atm= 0.025. For smallµ andµ large enough to produce saturation, measured

observables appear to be approaching their correct values as the coupling is decreased. However,

for intermediateµ values, these simulations predict a transition from hadronic to nuclear matter

at aµ which is far too small. Since there is evidence that for CLE simulations to produce correct

results the trajectories should remain close to theSU(3) manifold (at least for smallµ), we ex-

plore the parameter space to see where this is true. We find that the distance from this manifold

decreases as the coupling decreases and as the quark mass (inlattice units) decreases, i.e. as we

approach the continuum limit. This indicates that we need tosimulate at smaller couplings and

quark masses (requiring larger lattices) to see if these canproduce the correct physics.
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1. Introduction

QCD at finite quark/baryon-number density describes nuclear matter, the constituent of the
interiors of neutron stars and heavy nuclei. Hot nuclear matter is produced in relativistic heavy-ion
colliders, and was present in the early universe.

QCD at finite baryon/quark-number density has a sign problem which prevents direct appli-
cation of standard lattice simulations that are based on importance sampling. When finite density
is implemented by introducing a quark-number chemical potentialµ, the sign problem manifests
itself by making the fermion determinant complex. This precludes the direct application of stan-
dard lattice QCD simulations based on importance sampling. Since Langevin simulations are not
based on importance sampling, they can be extended to the case of complex actions [1, 2, 3, 4]. For
lattice QCD this requires analytically continuing the gauge fields fromSU(3) to SL(3,C). Complex
Langevin (CLE) simulations cannot be guaranteed to produce correct results unless the trajectories
are restricted to a compact domain, the drift term is holomorphic in the fields and the solutions are
ergodic [5, 6, 7, 8, 9, 10, 11, 12]. However, zeroes of the fermion determinant produce poles in the
drift term making it meromorphic not holomorphic in the fields. Thus convergence to the correct
limits cannot be guaranteed. CLE simulations of lattice QCD at finiteµ with heavy quarks have
been performed by [13, 14, 15, 16, 17]. CLE simulations with lighter quarks have been performed
by [18, 15, 19, 20, 21]. For a good summary of recent work on applying the CLE to lattice QCD at
finite µ with a guide to the literature see [10].

Our investigations [22] are aimed at determining whether the CLE is a viable wayof simulating
QCD at finiteµ, and if so, under what conditions. We have performed CLE simulations of lattice
QCD at zero temperature andµs ranging from zero to saturation, atβ = 6/g2 = 5.6 andβ = 5.7,
both atm= 0.025 The weaker coupling shows good agreement with expectations at smalland large
µs, but fails for couplings in the transition region. The results are comparedwith those of the phase-
quenched approximation, since random matrix theory suggests that when the CLE fails, it produces
phase-quenched results [23]. Other random matrix CLE simulations seem more optimistic [24] In
addition full and phase-quenched simulations are expected to agree at small and largeµ.

Since it appears that good results might be obtained with the CLE if the trajectories remain
close to theSU(3) manifold, we are studying how the unitarity norm, which measures this close-
ness, depends on quark mass (m) and β . We find that the average distance from this manifold
decreases asm decreases and as the couplingg decreases (β increases), i.e. as we approach the
continuum limit.

2. Complex Langevin Equation for Lattice QCD at finite µ

If S(U) is the gauge action after integrating out the quark fields, The Langevin equation for
the evolution of the gauge fieldsU in Langevin timet is:

−i

(

d
dt

Ul

)

U−1
l = −i

δ
δUl

S(U)+ηl (2.1)

whereS(U) is the gauge action after integrating out the quark fields.l labels the links of the lattice,
andηl = ηa

l λ a. Hereλa are the Gell-Mann matrices forSU(3) andηa
l (t) are Gaussian-distributed
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random numbers normalized so that:

〈ηa
l (t)ηb

l ′(t
′)〉 = δ abδll ′δ (t − t ′) (2.2)

The complex-Langevin equation has the same form except that theUs are now inSL(3,C). S,
nowS(U,µ) is

S(U,µ) = β ∑
�

{

1−
1
6

Tr[UUUU +(UUUU)−1]

}

−
Nf

4
Tr{ln[M(U,µ)]} (2.3)

whereM(U,µ) is the staggered Dirac operator, backward links are represented byU−1 notU† and
we choose to keep the noise termη real. We simulate the time evolution of the gauge fields using
a partial second-order formalism, and stochastic estimators for Tr{ln[M]} [26, 27, 28]

We apply adaptive updating: if the force term becomes too large,dt is decreased to keep it
under control. After each update, we gauge cool [25], gauge fixing tothe gauge which minimizes
the unitarity norm:

F(U) =
1

4V ∑
x,µ

Tr
[

U†U +(U†U)−1−2
]

≥ 0 . (2.4)

We use unimproved staggered quarks.

3. Zero Temperature Simulations atβ = 5.6 and β = 5.7, m= 0.025

We perform CLE simulations of 2-flavour lattice QCD at zero temperature atβ = 5.6, m=

0.025 on a 124 lattice and atβ = 5.7, m= 0.025 on a 164 lattice fromµ = 0 up to saturation. For
comparison, we perform RHMC simulations of the phase-quenched approximation over the same
parameter range, since random matrix theory suggests that when the CLE simulations fail they
produce the phase-quenched results.

The phase-quenched approximation is known to undergo a phase transition to a superfluid
phase atµ ≈ mπ/2. The chiral condensate is constant up to this transition and decreases beyond
it, vanishing at saturation. The quark-number density is zero up to the transition beyond which it
rises up to saturation, where all states are filled (density=3 in our normalization). At saturation the
quarks decouple and we have a pure gauge theory. For the full theoryone expects the observables
to remain at theirµ = 0 values up toµ ≈ mN/3 above which they evolve towards saturation. For
β = 5.6,m= 0.025,mπ/2≈ 0.21,mN/3≈ 0.33 [29], while forβ = 5.7,m= 0.025,mπ/2≈ 0.194,
mN/3≈ 0.28 [30, 31]. We typically run for 2-3 million updates at eachβ andµ.

Figure 1 shows the chiral condensate (〈ψ̄ψ〉), figure 2 the quark-number density and figure 3
the plaquettes, as functions ofµ at β = 5.7, m= 0.025 on a 164 lattice. The vertical red dotted
lines are atµ = mπ/2 andµ = mN/3 respectively. Forµ at or near zero and forµ at saturation,
where the quarks decouple and the gauge fields exhibit pure gauge dynamics, these observables are
in good agreement with known values, a considerable improvement fromβ = 5.6. However, for
bothβs, these graphs show a transition from hadronic to nuclear matter at aµ < mπ/2, rather than
at µ ≈ mN/3, a result even worse than the phase-quenched approximation.

The unitarity norm is significantly greater than zero throughout the transitionregion for both
β values, only becoming small aroundµ = 0.5. Forβ = 5.7, it remains small throughµ = 0.8
before increasing towards its pure gauge value at saturation. We conjecture that this means we can
trust the CLE forµ ≥ 0.5.
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Figure 1: Chiral condensate as a function ofµ on a
164 lattice atβ = 5.7 andm= 0.025.

Figure 2: Quark-number density as a function ofµ
on a 164 lattice atβ = 5.7 andm= 0.025.

Figure 3: Plaquette as a function ofµ on a 164 lat-
tice atβ = 5.7 andm= 0.025.

Figure 4: Average unitarity norm as a function ofµ
for β = 5.6, on a 124 lattice – red, and forβ = 5.7
on a 164 lattice – blue.

4. Dependence of the Unitarity Norm onmand on β = 6/g2

The behaviour of the CLE seems to improve if the gauge fields remain close to theSU(3)

manifold, i.e. if the unitarity norm remains small. It is thus useful to study how the average
unitarity norm depends on the simulation parameters. Therefore we study how this norm depends
on m andβ . Since we have seen that in the smallµ regime (µ < 0.5), where failures of the CLE
first manifest themselves, the unitarity norm decreases asµ increases from zero, it will suffice to
restrict ourselves toµ = 0. With β fixed at 5.6 andµ = 0, we determine the dependence of the
unitarity norm on the quark massm for 0.1≤ m≤ ∞. This dependence is shown in figure 5. The
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Figure 5: Unitarity norm as a function of inverse
quark mass atβ = 5.6

Figure 6: Unitarity norm as a function ofβ = 6/g2

for pureSU(3) gauge theory.

unitarity norm decreases asmdecreases falling by a factor of about 7 over this range.
We have already seen that, withm fixed at 0.025 the unitarity norm decreases whenβ is

increased from 5.6 to 5.7. Since the unitarity norm has its maximum form = ∞, i.e. for pure
SU(3) Yang-Mills theory, we choose to apply the CLE for this mass. Because thereare no quarks
such simulations are cheap and can be performed on smaller lattices than for lighter quarks. In
addition, without quarks, the actionis holomorphic in the fields, so that provided that the regions
over which they evolve are strongly bounded (and simply connected), theCLE should be valid. We
have run CLE simulations forβs in the range 5.6 ≤ β ≤ 7.0. The unitarity norms decrease asβ
is increased (g is decreased), falling by more than an order of magnitude over this range.This is
shown in figure 6. Except atβ = 5.6 the plaquette values are in excellent agreement with the exact
(monte-carlo) results indicating that the CLE produces correct results. We note that ourµ = 0
simulations atβ = 5.8, m= 0.02 andβ = 5.9, m= 0.015 on a 324 lattice give further indications
that the unitarity norm decreases asβ is increased andm is decreased.

The indications are that the unitarity norm will approach zero asm andg approach zero, i.e.
in the continuum limit. This gives us hope that the CLE might deliver correct results in this limit.

5. Discussion and Conclusions

We have simulated 2-flavour lattice QCD atβ = 5.6, m= 0.025 andβ = 5.7, m= 0.025 from
µ = 0 to µ = 1.5 (saturation) using the CLE with gauge-cooling and adaptive updating. These
runs were performed on lattices which are (at least for smallµs) at zero temperature. Forµ small,
and forµ at saturation, the observables appear to approach their physical values asβ is increased.
At intermediateµ values the transition from hadronic to nuclear matter occurs at an unphysically
smallµ.

It has been observed that CLE simulations are more likely to give the correct results if the
trajectories remain close to theSU(3) manifold. We study the dependence of the average distance
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from this manifold on (lattice) quark massm and onβ = 6/g2, and find that this decreases asm
andg decrease, i.e. as the continuum limit is approached. This suggests that we might find correct
physics, even in the transition region, for large enoughβs and small enoughms. It remains an open
question whether the continuum limit of CLE simulations will produce the correctphysics or, as
suggested by random matrix theories, phase-quenched results.

We have performed some exploratory CLE runs at finite temperatures on 123×6 lattices, with
m= 0.025 However, for 2-flavours andm= 0.025, we really needNt large enough thatβ = 5.6
is on the low temperature side of the transition from hadronic/nuclear matter to a quark-gluon
plasma, to have any chance of getting the correct physics. This means we would needNt ≥ 12.
This situation is worse than that with 4-flavour QCD [19].

Because of the flavour (‘taste’) breaking for staggered quarks, it ispossible that Wilson quarks
would be better suited for CLE simulations of lattice QCD at finiteµ. Other action modifications
such as the inclusion of chiral 4-fermion interactions might produce better results.

We should mention methods which are being tried by other researchers to improve the perfor-
mance of CLE simulations of QCD at finiteµ. These include modifying the dynamics to include
irrelevant terms which keep the unitarity norms closer to theSU(3) manifold [32], and including
additional terms in the action, which improve the behaviour of the CLE, with coefficients that can
be continued to zero afterwards [33].
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