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We simulate lattice QCD at finite quark-number chemical pti#é u, using the complex-
Langevin equation (CLE) with gauge-cooling and adaptivéatimg to prevent instabilities. The
CLE is used because QCD at finjtehas a complex fermion determinant which precludes the
use of standard simulation methods based on importancelisgm§$ince, even when CLE sim-
ulations converge, they are not guaranteed to produceatoasults except under very stringent
conditions, which lattice QCD at finitg does not obey, we need extensive testing to determine
under what conditions it produces reliable results. Wegueréd simulations g8 = 6/g? = 5.6
andf = 5.7, both atm= 0.025. For smalju andu large enough to produce saturation, measured
observables appear to be approaching their correct vatutbe aoupling is decreased. However,
for intermediateu values, these simulations predict a transition from hadrtmnuclear matter

at au which is far too small. Since there is evidence that for ChBwdations to produce correct
results the trajectories should remain close to$k€3) manifold (at least for small), we ex-
plore the parameter space to see where this is true. We fihthehdistance from this manifold
decreases as the coupling decreases and as the quark mlagiicérunits) decreases, i.e. as we
approach the continuum limit. This indicates that we neesirtailate at smaller couplings and
quark masses (requiring larger lattices) to see if thesg@uatuce the correct physics.
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1. Introduction

QCD at finite quark/baryon-number density describes nuclear matterptisitcent of the
interiors of neutron stars and heavy nuclei. Hot nuclear matter is prdducelativistic heavy-ion
colliders, and was present in the early universe.

QCD at finite baryon/quark-number density has a sign problem whicleptewdirect appli-
cation of standard lattice simulations that are based on importance sampling. fWteedensity
is implemented by introducing a quark-number chemical potentighe sign problem manifests
itself by making the fermion determinant complex. This precludes the diretitappn of stan-
dard lattice QCD simulations based on importance sampling. Since Langevin simsilate®not
based on importance sampling, they can be extended to the case of contiples {c[2[B[}4]. For
lattice QCD this requires analytically continuing the gauge fields f&i(8) to SL(3,C). Complex
Langevin (CLE) simulations cannot be guaranteed to produce coe®dts unless the trajectories
are restricted to a compact domain, the drift term is holomorphic in the fields arsbhlitions are
ergodic [5[b[J7[09]9. 14, 1L, ]12]. However, zeroes of the fermarrinant produce poles in the
drift term making it meromorphic not holomorphic in the fields. Thus convergdo the correct
limits cannot be guaranteed. CLE simulations of lattice QCD at finiteith heavy quarks have
been performed by 13, 1f,]15] 16] 17]. CLE simulations with lighter cquibeve been performed
by [£8,[I%,[IP[20, 21]. For a good summary of recent work on apgltfie CLE to lattice QCD at
finite u with a guide to the literature sefe J10].

Our investigationq[22] are aimed at determining whether the CLE is a viablefgayulating
QCD at finiteu, and if so, under what conditions. We have performed CLE simulationgtmfda
QCD at zero temperature apg ranging from zero to saturation, @it= 6/g?> = 5.6 andp = 5.7,
both atm= 0.025 The weaker coupling shows good agreement with expectations atsmédrge
us, but fails for couplings in the transition region. The results are compétedhose of the phase-
guenched approximation, since random matrix theory suggests that véh€h Erfails, it produces
phase-quenched resulfs][23]. Other random matrix CLE simulations seegroptimistic [24] In
addition full and phase-quenched simulations are expected to agreellasdiargep.

Since it appears that good results might be obtained with the CLE if the tragsctemain
close to theSU(3) manifold, we are studying how the unitarity norm, which measures this close-
ness, depends on quark maey and 3. We find that the average distance from this manifold
decreases aw decreases and as the couplipgecreasesj increases), i.e. as we approach the
continuum limit.

2. Complex Langevin Equation for Lattice QCD at finite u

If S(U) is the gauge action after integrating out the quark fields, The Langevatieguor
the evolution of the gauge fields in Langevin timet is:

—i <§tul) U= —i;UIS(U) +n (2.1)

whereS(U) is the gauge action after integrating out the quark fidldsbels the links of the lattice,
andn; = n2A2. HereA, are the Gell-Mann matrices f@U(3) andn@(t) are Gaussian-distributed
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random numbers normalized so that:

(NRONE(t)) = 6208 5(t —t') (2.2)

The complex-Langevin equation has the same form except thatgta@e now irSL(3,C). S
nowSU, ) is

S(U,u)=p g {1— %Tr[UUUU + (UUUU)l]} — %Tr{ln[M(U,u)]} (2.3)

whereM (U, ) is the staggered Dirac operator, backward links are represent¢d’byotU™ and
we choose to keep the noise terreal. We simulate the time evolution of the gauge fields using
a partial second-order formalism, and stochastic estimators {tm[M]} [P8, [27,[2B]

We apply adaptive updating: if the force term becomes too latges decreased to keep it
under control. After each update, we gauge cfdl [25], gauge fixitiget@auge which minimizes
the unitarity norm:

F(U):%ZTr[UTU—i—(UTU)_l—Z}20. (2.4)
XH

We use unimproved staggered quarks.

3. Zero Temperature Simulations atB = 5.6 and = 5.7, m= 0.025

We perform CLE simulations of 2-flavour lattice QCD at zero temperatufe-at5.6, m =
0.025 on a 12 lattice and a3 = 5.7, m= 0.025 on a 16 lattice fromu = 0 up to saturation. For
comparison, we perform RHMC simulations of the phase-quenchedapaton over the same
parameter range, since random matrix theory suggests that when theirGuatons fail they
produce the phase-quenched results.

The phase-quenched approximation is known to undergo a phase transitosuperfluid
phase aj: =~ m;/2. The chiral condensate is constant up to this transition and decreasesib
it, vanishing at saturation. The quark-number density is zero up to thétioanseyond which it
rises up to saturation, where all states are filled (density=3 in our normatizafibsaturation the
qguarks decouple and we have a pure gauge theory. For the full tbeergxpects the observables
to remain at theipu = 0 values up tqu ~ my /3 above which they evolve towards saturation. For
B =5.6,m=0.025,m;/2~0.21,my/3~ 0.33 [29], while for3 = 5.7, m=0.025,m;/2 ~ 0.194,
my /3~ 0.28 [30,[31]. We typically run for 2-3 million updates at eg&tand .

Figure[] shows the chiral condensatg ), figure[ the quark-number density and figfijre 3
the plaquettes, as functions pfat 8 = 5.7, m= 0.025 on a 16 lattice. The vertical red dotted
lines are afu = my;/2 andu = my/3 respectively. Fopu at or near zero and fqu at saturation,
where the quarks decouple and the gauge fields exhibit pure gaugenitgn these observables are
in good agreement with known values, a considerable improvementfrend.6. However, for
both 3s, these graphs show a transition from hadronic to nuclear mattgr at@y,/2, rather than
atu ~ my/3, a result even worse than the phase-quenched approximation.

The unitarity norm is significantly greater than zero throughout the transiigion for both
B values, only becoming small aroupd= 0.5. Forf3 = 5.7, it remains small througjx = 0.8
before increasing towards its pure gauge value at saturation. We tuosjétat this means we can
trust the CLE foru > 0.5.
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Figure 1: Chiral condensate as a functiongfon a Figure 2: Quark-number density as a function jof
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Figure 3: Plaguette as a function @f on a 16 lat- Figure 4: Average unitarity norm as a function pf
tice at = 5.7 andm = 0.025. for B = 5.6, on a 12 lattice — red, and fo = 5.7
on a 14 lattice — blue.

4. Dependence of the Unitarity Norm onmand on 8 = 6/g°

The behaviour of the CLE seems to improve if the gauge fields remain close 832
manifold, i.e. if the unitarity norm remains small. It is thus useful to study how tlezage
unitarity norm depends on the simulation parameters. Therefore we studghtsonorm depends
onmandf. Since we have seen that in the smaltegime (4 < 0.5), where failures of the CLE
first manifest themselves, the unitarity norm decreasgs iasreases from zero, it will suffice to
restrict ourselves tg = 0. With 3 fixed at 56 andu = 0, we determine the dependence of the
unitarity norm on the quark massfor 0.1 < m < c. This dependence is shown in fig{ife 5. The
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Figure 5: Unitarity norm as a function of invers€igure 6: Unitarity norm as a function o8 = 6/g°

quark mass g8 = 5.6

for pureSU(3) gauge theory.

unitarity norm decreases asdecreases falling by a factor of about 7 over this range.

We have already seen that, with fixed at 0025 the unitarity norm decreases whgns
increased from % to 57. Since the unitarity norm has its maximum for= oo, i.e. for pure
SU(3) Yang-Mills theory, we choose to apply the CLE for this mass. Because @éneneo quarks
such simulations are cheap and can be performed on smaller lattices tharhfer igarks. In
addition, without quarks, the actios holomorphic in the fields, so that provided that the regions
over which they evolve are strongly bounded (and simply connected}ltBeshould be valid. We
have run CLE simulations fgBs in the range B < 3 < 7.0. The unitarity norms decrease s
is increasedd is decreased), falling by more than an order of magnitude over this ramgeis
shown in figurd 6. Except @& = 5.6 the plaquette values are in excellent agreement with the exact
(monte-carlo) results indicating that the CLE produces correct resulssndté that oupr = 0
simulations a3 = 5.8, m= 0.02 andB = 5.9, m= 0.015 on a 32 lattice give further indications

that the unitarity norm decreasesfass increased anthis decreased.

The indications are that the unitarity norm will approach zermasdg approach zero, i.e.
in the continuum limit. This gives us hope that the CLE might deliver correttt®in this limit.

5. Discussion and Conclusions

We have simulated 2-flavour lattice QCDf&t= 5.6, m= 0.025 andB = 5.7, m= 0.025 from
u =0 to u = 15 (saturation) using the CLE with gauge-cooling and adaptive updatingserh
runs were performed on lattices which are (at least for spg)llat zero temperature. Farsmall,
and foru at saturation, the observables appear to approach their physicad eaBiés increased.
At intermediateu values the transition from hadronic to nuclear matter occurs at an unphysic

smallu.

It has been observed that CLE simulations are more likely to give the togsdts if the
trajectories remain close to ti8J(3) manifold. We study the dependence of the average distance
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from this manifold on (lattice) quark massand on = 6/g?, and find that this decreasesras

andg decrease, i.e. as the continuum limit is approached. This suggests that ktdindgorrect

physics, even in the transition region, for large eno@gltand small enougims. It remains an open
question whether the continuum limit of CLE simulations will produce the cophgsics or, as
suggested by random matrix theories, phase-quenched results.

We have performed some exploratory CLE runs at finite temperatures’on6lttices, with
m = 0.025 However, for 2-flavours anah = 0.025, we really need\; large enough thg = 5.6
is on the low temperature side of the transition from hadronic/nuclear matter w@r&-gluon
plasma, to have any chance of getting the correct physics. This meansw@ need\; > 12.
This situation is worse than that with 4-flavour QCD][19].

Because of the flavour (‘taste’) breaking for staggered quarkspddsible that Wilson quarks
would be better suited for CLE simulations of lattice QCD at fipiteOther action modifications
such as the inclusion of chiral 4-fermion interactions might produce beseits.

We should mention methods which are being tried by other researchers toaripeoperfor-
mance of CLE simulations of QCD at finije. These include modifying the dynamics to include
irrelevant terms which keep the unitarity norms closer to$kh¢3) manifold [32], and including
additional terms in the action, which improve the behaviour of the CLE, witHicgeits that can
be continued to zero afterwards]33].
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