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1. Introduction

Lattice Monte Carlo methods, the only broadly applicable approach to studying strongly cou-
pled field theories, compute thermal expectation values via importance sampling according to the
Boltzmann factor e−S(φ), where S is the euclidean-spacetime lattice action and φ is a field configu-
ration. In fermionic theories with a non-zero chemical potential, the action is typically not real, so
that e−S cannot be interpreted as a probability distribution. This is termed the fermion sign problem.
The severity of the sign problem is characterized by the average phase

〈σ〉 ≡
∫

Dφ e−S(φ)∫
Dφ e−ReS(φ)

, (1.1)

where 〈σ〉 = 1 in the absence of a sign problem, and the average phase becomes smaller as the
sign problem becomes more severe. Typically, the average phase decays exponentially with the
spacetime volume of the system being simulated. In the presence of a sign problem, expectation
values are evaluated by reweighting:

〈O〉=
∫

Dφ O(φ)e−S(φ)
/∫

Dφ e−ReS(φ)∫
Dφ e−S(φ)

/∫
Dφ e−ReS(φ)

=

〈
Oe−i ImS

〉
ReS

〈e−i ImS〉ReS
. (1.2)

Here 〈O〉ReS denotes an expectation value taken with respect to the probability density e−ReS. The
denominator is the average phase 〈σ〉. The smallness of the denominator increases the noise in the
estimator, necessitating more samples to achieve the same statistical error.

Towards alleviating the sign problem, it was proposed to view the path integral as a contour
integral (in the sense of complex analysis), and deform the integration contour into complex field
space. Initially, the deformed integration contour was chosen to be the Lefschetz thimbles [1].
Later work proposed manifolds interpolating between the real plane and the thimbles [2], and used
machine learning methods to obtain a more efficient parameterization [3]. While these approaches
have met with some success, an efficient algorithm for integrating on the thimbles remains elusive.
Additionally, it is generally the case that the Lefschetz thimbles are not the manifold with the
mildest-possible sign problem — we expect a more judicious choice of manifolds to do better.

In this talk, we present a method [4] for optimizing 〈σ〉 in a large class of manifolds. This
method is used to compute the phase diagram of a lattice Thirring model in 2+1 dimensions [5].
Similar methods have been proposed and applied to two-dimensional scalar field theory [6], QCD
effective theories [7], and a one-dimensional bose gas [8].

As a testbed for this method, we will consider the Thirring model in 2+1 dimensions, defined
by the euclidean lattice action

S = ∑
x,ν

NF

g2 (1− cosAν(x))+∑
x,y

ψ̄
a(x)Dxy(A)ψa(y) (1.3)

where−π < Aµ(x)≤ π is a compact bosonic auxiliary field. The staggered fermion matrix is given
by

Dxy = mδxy +
1
2

2

∑
ν=0

[
ην(x)eiAν (x)+µδν0δx+ν̂ ,y−η

†
ν(y)e

−iAν (y)−µδν0δx,y+ν̂

]
, (1.4)

where ην(x) = (−1)x0+...+xν−1 , the flavor index a takes values from 1, . . . ,NF/2, g is the coupling,
µ is the chemical potential, and m is the bare mass. We work with NF = 2 flavors of fermions.

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
1
4
9

Sign-Optimized Manifolds for Finite Density Scott Lawrence

2. Path Integral as a Contour Integral

Before deforming the domain of integration of the path integral, we must define the complex-
ified field space. For a three-dimensional lattice with V sites, there are 3V compact degrees of
freedom Aµ(x), so that the field space is the hypertorus

(
S1
)3V ≈ T3V . The lattice path integral

is originally an integral over this torus. The complexification of S1 is the complex plane without
the origin C\{0}, or equivalently, the cylinder S1×R. The complexified Aµ(x) live in the latter
space; the full complexified field space is

(
S1×R

)3V . The deformed integration contour will be a
3V -dimensional hypersurface in this space.

The deformation of the contour of integration is enabled by Cauchy’s integral theorem, which
states that if a function f is holomorphic on an N+1-dimensional region Ω⊂CN , then the integral
along the boundary vanishes:

∫
∂Ω

f dz = 0. As a direct consequence, if an N-real-dimensional
hypersurface γ1 can be deformed continuously into another γ2, the integrals on the two surfaces are
equal. In particular, if a manifold M can be obtained by a continuous deformation of the original
domain of integration T3V , then ∫

M
f (φ̃) d3V

φ̃ =
∫
T3V

f (φ) d3V
φ (2.1)

for any holomorphic function f (φ).
In practice, the integration along M is performed by parameterizing M by the original, real

domain. A continuous function φ̃(φ) is constructed which takes a point φ ∈ T3V to a point φ̃(φ) ∈
M . An integral along M can now be written∫

φ

D φ̃ e−S(φ̃) =
∫
T3V

Dφ e−S[φ̃(φ)]+logdetJ , (2.2)

where Ji j ≡ ∂ φ̃i
∂φ j

is the jacobian introduced by the change of variables.
For physical observables to be unchanged, it is necessary that all integrands of physical interest

are holomorphic functions. In the case of the Boltzmann factor, this is easily seen, as the fermionic
and bosonic pieces may be separated as e−SB detD into a product of two manifestly holomorphic
factors. It is less clear that integrands involved in propagators, for instance, are holomorphic: in
the meson propagator〈

ψ̄iψ̄ jψ jψi
〉
=

1
Z

∫
Dφ e−SB(φ) detD

[
D−1

i j D−1
ji −D−1

ii D−1
j j

]
,

the integrand appears to be singular where detD = 0. However, as shown in the appendix of [9],
all such integrands arising from fermionic many-point functions are indeed holomorphic.

Note that although the integrands involved in estimating physical observables are holomorphic,
the integrand in the numerator of (1.1) is not. This implies that the average phase will depend on
the manifold chosen for integration, and justifies this approach to resolving the sign problem.

3. Optimizing the Manifold

Given a family of manifolds Mλ , we will use gradient ascent to find a local maximum of the
average phase 〈σ〉. To do so efficiently, we exploit the fact that the numerator of (1.1), being the

2
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integral of a holomorphic function, does not depend on λ . The gradient of the average phase, then,
is determined entirely by ∇λ

∫
e−ReS. As a derivative of a phase-quenched partition function, this

may be written as a phase-quenched observable — in particular, it has no sign problem. Working
with the real part of log〈σ〉, we find

∇λ log |〈σ〉
λ
|=
〈
∇λ ReS−ReTrJ−1

∇λ J
〉

ReS . (3.1)

The gradient ascent begins at an arbitrary point Mλ0 in manifold space. At each step, a short
Monte Carlo is done to estimate ∇λ log |〈σ〉

λ
|, and then λ is updated according to

λi+1 = λi + ε∇λ log |〈σ〉
λ
| . (3.2)

This process is repeated until the parameters λ converge, at which point an ordinary Monte Carlo
is performed on the manifold Mλfinal to determine physical expectation values.

This algorithm is enabled by the fact that expression (3.1) for the gradient of the average phase
can be computed efficiently. This is a somewhat remarkable fact: the average phase itself is difficult
to estimate, but the direction in which a manifold should be deformed to improve the average phase
is relatively easy to estimate.

In practice, the gradient ascent process is made more efficient by the use of adaptive stepsize,
momentum, and other improvements. For the results in this talk, ADAM [10] was used.

4. Heavy-Dense Limit

The procedure described thus far is useful only if we have an ansatz for a manifold on which
the average phase 〈σ〉may be tolerably large. In the case of the Thirring model, we produce such an
ansatz by considering the heavy-dense limit. We expand the fermion determinant in powers of e−µ ,
and consider the leading term. At large µ , where the average phase is smallest, this is the term that
dominates. In this limit, the fermion determinant is simply detD = eβL2µ

(
ei∑x A0(x)+O(e−β µ)

)
.

Therefore, the lattice path integral reads

Z =

[∫
dA0 e

NF
g2 cosA0+µ+iA0

]βL2 [∫
dA1 e

NF
g2 cosA1

]2βL2

. (4.1)

In this way the path integral factorizes into a product of 3βL2 independent integrals, one for each
lattice degree of freedom. Motivated by this observation, we chose as an ansatz a manifold which
also factorizes: the imaginary part of Aµ(x) is a function only of the real part of Aµ(x), depending
on no other degrees of freedom. The symmetry A→ −A of the action suggests that we restrict
ourselves to manifolds for which the imaginary part is an even function of the real part. Finally, as
the spatial integral (over A1) has no sign problem, we deform only A0. A general manifold in this
class is given by the fourier series

Ã0(x) = A0(x)+ i [λ0 +λ1 cosA0(x)+λ2 cos2A0(x)+ · · · ] , (4.2)

Ãi(x) = Ai(x). (4.3)

We truncate the series after the third term, so that the family of manifolds has only the three pa-
rameters {λ0,λ1,λ2}.

3
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Because this manifold ansatz factorizes, the jacobian matrix in (2.2) is diagonal. This is com-
putationally convenient, as computing detJ for a generic matrix J is an O(V 3) task, where V is the
spacetime volume of the lattice. For a diagonal matrix, this requires only O(V ) operations.

5. Lattice Calculation

The ansatz given by (4.2) and (4.3), after optimization, allows us to access substantially larger
chemical potentials than would have been feasible on the real plane. We simulate β × 62 lattices
for β = 4,6,8,10,12, using a bare mass of m = 0.01 and a coupling constant g = 1.08. These
parameters are chosen to bring the lattice near a chiral phase transition. We quote the results of
these calculations in lattice units.

On a spatial volume of 102, we measure the fermion and meson masses to be m f = 0.46(1)
and mb = 0.21(1), respectively. These masses have a small dependence on the volume L2, but at
all volumes we find mb� 2m f , indicating a strongly coupled theory.
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Figure 1: The chiral symmetry breaking phase transition. On the left, the condensate 〈ψ̄ψ〉, as a function of
chemical potential µ on β×62 lattices, showing the condensate melting (and symmetry being approximately
restored) at large densities. On the right, the full T -µ plane for the same spatial volume. The central
band indicates the location of 〈ψ̄ψ〉

µ,T = 0.5〈ψ̄ψ〉0. The side bands mark 〈ψ̄ψ〉
µ,T = (0.5±0.05)〈ψ̄ψ〉0,

indicating the sharpness of the transition. Details of the fits done to determine these contours are given in
[5].

The chiral condensate 〈ψ̄ψ〉 is computed across a range of chemical potentials, and plotted
in Fig. 1, along with the resulting phase diagram. The condensate can be seen to melt, marking
the restoration of approximate chiral symmetry, at both large temperatures and large chemical
potential.

6. Heavy-Dense Lefschetz Thimbles

Despite great advances of technology over the last decade, the task of integrating directly on
the Lefschetz thimbles remains well out of reach in the general case. We would nevertheless like
to compare the average phase on the sign-optimized manifolds used here to that on the thimbles.
This will compare the algorithm described in this talk to a hypothetical, efficient algorithm for
integrating exactly on the Lefschetz thimbles. No such general algorithm exists; however, in certain
limits where the thimbles are exactly known, this comparison is possible.
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One such limit is µ = 0; however, this limit is trivial, as neither the manifold ansatz described
here, nor the thimbles have a sign problem at all. More significant is the heavy-dense limit, in
which the partition function factorizes into βV identical one-dimensional integrals: Z = ZβV

1 .
Because the partition function factorizes, the average phase does as well. The average phase

on a spacetime volume βV is exactly the average phase on a single site, raised to that power:
〈σ〉 = 〈σ〉βV

1 . This relation holds both on the ansatz and on the thimbles themselves. Therefore,
a comparison of the ansatz and the thimbles requires taking only one-dimensional integrals to
compute 〈σ〉1, from which 〈σ〉 at any volume and temperature can be easily obtained.

Performing this comparison with a coupling of g = 1.08, we find that the average phase on the
real plane is 0.645, the average phase on the thimbles is 0.985, and the average phase on the sign-
optimized manifold is 0.9996. These differences are small on a single-site lattice: a calculation
on the thimbles would take only 3% longer than one on the sign-optimized ansatz. However, the
difference is overwhelming on a more substantial lattice. On the largest lattice simulated (103

sites), the real-plane average phase is 4× 10−191, the thimble average phase is 3× 10−7, and the
ansatz average phase is 0.67. The ansatz has a speed advantage of a factor of 5× 1012 over the
thimbles, before the efficiency of integration itself is taken into account.

Figure 2: The thimble and ansatz manifold compared in the A0 direction. The curvature of the thimble (red)
results in large cancellations not present on the ansatz manifold (black).

To understand the origin of the thimbles’ disadvantage, the thimbles and ansatz manifold are
compared in Fig. 2. Near the minimum of the action, at ReA0 = 0, the two manifolds are quite
similar. However, near ReA0 = π the thimbles curve sharply upward, introducing large phase
cancellations. The sign-optimized manifold lacks these cancellations, resulting in a larger average
phase.

This comparison establishes that, even on a relatively tame 103 lattice, calculations on the
Lefschetz thimbles are unable to access certain limits of the theory, while other integration contours
are able to do so.

7. Conclusions

The method of sign-optimized manifolds described here allows a large space of trial manifolds

5
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to be efficiently explored by gradient ascent, in a search for the manifold with the largest average
phase, and therefore the mildest sign problem. A particular ansatz was constructed for the Thirring
model, and demonstrated in 2+ 1 dimensions. A large section of the T -µ plane may be explored
with the resulting manifolds, demonstrating the melting of a chiral condensate at large fermion
densities.

In the limit of large chemical potential µ , this method can be compared directly to an inte-
gration directly on the Lefschetz thimbles; the sign-optimized manifolds exhibit an average phase
many orders of magnitude larger than that on the thimbles. This is a concrete demonstration of
the fact that Lefschetz thimbles do not provide the best-possible average phase, and for high-
dimensional problems, better manifolds are required.

Future work must focus on exploring larger classes of manifolds [6, 8], with an eye towards
finding manifolds with tolerable average phases on gauge theories and theories in 3+1 dimensions.
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