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1. Introduction

The axial U(1)A symmetry plays an unique role in quantum chromodynamics (QCD). In the
low-temperature phase, it is violated by the chiral anomaly and is closely related to topological
excitations of background gluon fields, such as the instantons. As an order parameter of the U(1)A

symmetry breaking, the U(1)A susceptibility, ∆π−δ , may be defined by a difference between the
correlators of isovector-pseudoscalar (πa ≡ iψ̄τaγ5ψ) and isovector-scalar (δ a ≡ ψ̄τaψ) operators:

∆π−δ ≡ χπ −χδ ≡
∫

d4x〈πa(x)πa(0)−δ
a(x)δ a(0)〉, (1.1)

where a is an isospin index. In this work we consider two flavor (N f = 2) QCD.
In the high temperature phase, the (spontaneously broken) chiral symmetry is restored, while

the restoration (or violation) of the U(1)A symmetry remains a long standing problem. The JLQCD
Collaboration observed a restoration of the U(1)A symmetry above the critical temperature Tc in
N f = 2 lattice QCD [1, 2]. Because the U(1)A susceptibility is sensitive to any tiny violation of
chiral symmetry on the lattice, the lattice fermion formalism maintaining the chiral symmetry, such
as the overlap (OV) or domain-wall (DW) fermions, was applied. In Ref. [1], the U(1)A symmetry
was investigated using the Dirac spectrum on gauge configurations generated with the dynamical
OV fermions in a fixed topological sector, Q= 0. In Ref. [2], the gauge configurations are generated
with dynamical Möbius domain-wall (MDW) fermions [3, 4]. Since the Ginsparg-Wilson (GW)
relation [5] for the MDW fermion is slightly violated especially for larger lattice spacings [6], we
applied the DW/OV reweighting technique [2]. In this case, observables measured on the gauge
ensembles with dynamical MDW fermions is reweighted to that on OV fermion ensembles, for
which the GW relation is precisely satisfied.

In these proceedings, we report the recent results of the U(1)A symmetry above Tc in N f = 2
lattice QCD simulations with finer lattice spacing than Refs. [1, 2]. In particular, we will newly
define the U(1)A susceptibility subtracted the ultraviolet divergence and compare the results with
and without the ultraviolet contribution. Note that a part of our results has already been reported in
Refs. [7, 8].

2. Simulation setup

2.1 U(1)A susceptibility on the lattice

In the continuum theory, the U(1)A susceptibility (1.1) for fermion operators with a mass m
can be rewritten as

∆π−δ =
∫

∞

0
dλ ρ(λ )

2m2

(λ 2 +m2)2 , (2.1)

where the Dirac eigenvalue spectral density is defined by ρ(λ ) = (1/V )〈∑λ ′ δ (λ −λ ′)〉 with the
Dirac eigenvalues λ and the four-dimensional volume V = L3 × Lt . On the lattice, the U(1)A

susceptibility for OV fermion operators may be given by [6]

∆
ov
π−δ

=
1

V (1−m2)2

〈
∑

i

2m2(1−λ
(ov,m)2
i )2

λ
(ov,m)4
i

〉
, (2.2)
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where λ
(ov,m)
i is the i-th eigenvalue of the (hermitian) massive overlap-Dirac operator, and the

lattice spacing is set to a = 1. If the GW relation is not exact, we need additional terms in Eq. (2.2)
[6]. In the following, we discuss the subtraction of two contributions to the U(1)A susceptibility:
the chiral zero modes and the ultraviolet divergence.

Eq. (2.2) includes the effect of nontrivial topological sectors from chiral zero modes: λ
(ov,m)
i ≈

±m, where “≈” implies possible small violation of the GW relation in our simulations (If the GW
relation is exact, then λ

(ov,m)
i = ±m). After subtracting such zero modes, we define a modified

U(1)A susceptibility:

∆̄
ov
π−δ
≡ ∆

ov
π−δ
− 1

V (1−m2)2

〈
∑

0−mode

2m2(1−λ
(ov,m)2
i )2

λ
(ov,m)4
i

〉
. (2.3)

If the GW relation is exact, the second term of Eq. (2.3) can be written as 2N0/V m2, where N0 is
the number of chiral zero modes. 〈N2

0 〉 is expected to scale as O(V ), so that N0/V as O(1/
√

V ).
Therefore, the contribution from the exact zero modes vanish in the thermodynamic limit: N0/V →
0 as V →∞. By subtracting this contribution, the infinite volume limit would be approached faster.

Next we comment on the ultraviolet divergence. Eq. (2.1) in the continuum theory contains an
the (logarithmic) ultraviolet divergence, and Eq. (2.2) on the lattice includes a large contribution
from the lattice cutoff Λ, which is proportional to m2 lnΛ. Therefore, ∆π−δ (m) at a valence quark
mass m can be parametrized as

∆π−δ (m) =
a

m2 +b+ cm2 +O(m4), (2.4)

where the first term is the contribution from the zero modes. The second term is the U(1)A violation
which we are interested in. The third term represents the contribution of m2 lnΛ. Here, in order
to eliminate a and c, and to extract b, we use ∆π−δ (m) at three different valence quark masses
(m2 < m1 < m3):

b' ∆
finite
π−δ
≡

(m2
1 +m2

2)(m
2
1 +m2

3)

m2
3−m2

2

[
m2

1∆(m1)−m2
2∆(m2)

m4
1−m4

2
−

m2
1∆(m1)−m2

3∆(m3)

m4
1−m4

3

]
. (2.5)

Note that we can use this formula also for ∆̄π−δ (m) as defined in Eq. (2.3). In that case, after the
contributions of the zero modes in ∆finite

π−δ
are already subtracted, the contribution proportional to

a/m2 is absent.

2.2 Numerical setup

Our simulation parameters are summarized in Table 1. We use the lattice with the spatial
size L = 24,32,48 and the temporal length Lt = 12 which corresponds to T = 220MeV at the
lattice spacing, 1/a = 2.64GeV (a ∼ 0.075fm). For quark masses, we generate the data at am =

0.001−0.01 (2.64−26.4MeV).
We use the tree-level Symanzik improved gauge action. For the fermion part, we apply the

MDW fermions [3, 4] with a smeared link. An observable O measured on the MDW fermion
ensembles is transformed to that of the OV fermion by the DW/OV reweighting technique [2]:

〈O〉ov =
〈OR〉DW

〈R〉DW
, (2.6)
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Table 1: Numerical parameters in lattice simulations. L3×Lt , Ls, β , a, and m are the lattice size, length
of the fifth dimension in the Möbius domain-wall fermion, gauge coupling, lattice spacing, and quark mass,
respectively.

L3×Lt Ls β a [fm] T [MeV] am
243×12 16 4.30 0.075 220 0.001
243×12 16 4.30 0.075 220 0.0025
243×12 16 4.30 0.075 220 0.00375
243×12 16 4.30 0.075 220 0.005
243×12 16 4.30 0.075 220 0.01
323×12 16 4.30 0.075 220 0.001
323×12 16 4.30 0.075 220 0.0025
323×12 16 4.30 0.075 220 0.00375
323×12 16 4.30 0.075 220 0.005
323×12 16 4.30 0.075 220 0.01
483×12 16 4.30 0.075 220 0.001
483×12 16 4.30 0.075 220 0.0025
483×12 16 4.30 0.075 220 0.00375
483×12 16 4.30 0.075 220 0.005

where 〈· · · 〉DW and 〈· · · 〉ov are the ensemble average with the MDW and reweighted OV fermions,
respectively. R is the reweighting factor which is stochastically estimated on the MDW fermion
ensembles. This procedure reduces the violation of the GW relation remaining with the MDW
fermions. In Section 3, we compare λ

(ov,m)
i and ∆̄ov

π−δ
on the MDW ensembles with and without

DW/OV reweighting.

3. Preliminary results

3.1 Spectral density of overlap-Dirac eigenvalues

In Fig. 1, we show the spectral density ρ(|λ |) of the overlap-Dirac eigenvalues λ measured on
the MDW ensembles at T = 220MeV with and without the DW/OV reweighting. At the smallest
quark mass m = 2.64MeV (the upper panel in Fig. 1), we find that the low lying eigenmodes are
strongly suppressed. We can clearly distinguish the zero modes from other higher modes. Since
Eq. (2.3) means that the finite value of ∆̄ov

π−δ
comes from the non-zero modes, the suppression of

the low modes is reflected in the small value of ∆̄ov
π−δ

. Note that the zero modes in the spectrum
of the DW (shown by blue bins) are likely due to artifacts caused by the mismatch between the
valence and sea quark formulations (in other words, the partially quenched setup). In the results
after the reweighting (shown by magenta bins), such zero modes are removed.

At a larger quark mass (the lower panel in Fig. 1), the low-modes turned out to appear more
frequently, and we cannot clearly separate the zero modes from other modes. The increase of the
low but nonzero modes leads to a large value of ∆̄ov

π−δ
. In this case, the zero modes found on the

DW ensemble survive even after the DW/OV reweighting, which indicates that such zero modes
are not due to the lattice artifact.
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Figure 1: Spectral density ρ(|λ |) for overlap-Dirac eigenvalues λ at T = 220MeV. Upper panel: m =

2.64MeV. Lower panel: m = 26.4MeV. Blue and magenta bins correspond to the spectra on the original
Möbius domain-wall (DW) and reweighted overlap (OV) fermion ensembles, respectively.

3.2 U(1)A susceptibility

In Fig. 2, we show the quark mass dependence of the U(1)A susceptibility ∆̄ov
π−δ

at T =

220MeV. The left panel shows the results at the spatial volume L = 323. Here, the circles (squares)
correspond to the result on the OV (DW) ensemble. Since ∆̄ov

π−δ
on the DW includes fictitious

modes by the partially quenched approximation, we expect that ∆̄ov
π−δ

on the OV (circle) is closer
to the continuum limit. Also, the open (filled) symbols represent the results before (after) the UV
subtraction (2.5). The former includes the ultraviolet contributions, so that it overestimates the
U(1)A susceptibility by the amount that depends on the lattice cutoff.

In the small quark mass region (m . 10MeV), ∆̄ov
π−δ

on the OV nearly vanishes. It strongly
suggests that the U(1)A symmetry is restored in the chiral limit. Near m ∼ 10MeV, we find a
sudden increase of ∆̄ov

π−δ
. This may suggest the existence of a “critical mass” as discussed in

Ref. [9].
In the right panel of Fig. 2, we show the volume dependence of the U(1)A susceptibility. For

the small quark mass, there is no visible volume dependence between L = 24 and 48. On the other
hand, at large quark mass m∼ 25MeV, we found a clear volume dependence. Investigation of the
reason for this behavior is ongoing.
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Figure 2: Quark mass dependence of U(1)A susceptibilities, ∆̄ov
π−δ

, from the eigenvalue density of the
overlap-Dirac operators at T = 220MeV. Left: UV-included (open) and UV-subtracted (filled) results on
the Möbius domain-wall (squares) and reweighted overlap (circles) ensembles at L = 32. Right: Volume
dependence (L = 24,32,48).

4. Conclusion and outlook

In this work, we studied the U(1)A symmetry above the critical temperature from N f = 2 lat-
tice QCD simulations. The quark mass dependence of the U(1)A susceptibility at T = 220MeV
suggests the restoration of U(1)A symmetry in the chiral limit, which is consistent with the theoret-
ical prediction of Ref. [9]. As other observables to characterize the restoration of U(1)A, we may
analyze hadronic correlators (for the spatial meson correlators from our gauge configurations, see
Refs. [10, 11]).

The U(1)A symmetry at lower temperature near the chiral transition and N f = 2+1 simulations
needs to be studied. The previous studies in Refs. [12, 13, 14, 15] suggested the violation of U(1)A

symmetry, and the comparison between these works and our results should be also clarify.
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